Skip to main content
Log in

Candidate Genes Expressed in Human Islets and Their Role in the Pathogenesis of Type 1 Diabetes

  • Pathogenesis of Type 1 Diabetes (D Dabelea, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

In type 1 diabetes (T1D), the insulin-producing β cells are destroyed by an immune-mediated process leading to complete insulin deficiency. There is a strong genetic component in T1D. Genes located in the human leukocyte antigen (HLA) region are the most important genetic determinants of disease, but more than 40 additional loci are known to significantly affect T1D risk. Since most of the currently known genetic candidates have annotated immune cell functions, it is generally considered that most of the genetic susceptibility in T1D is caused by variation in genes affecting immune cell function. Recent studies, however, indicate that most T1D candidate genes are expressed in human islets suggesting that the functions of the genes are not restricted to immune cells, but also play roles in the islets and possibly the β cells. Several candidates change expression levels within the islets following exposure to proinflammatory cytokines highlighting that these genes may be involved in the response of β cells to immune attack. In this review, the compiling evidence that many of the candidate genes are expressed in islets and β cells will be presented. Further, we perform the first systematic human islet expression analysis of all genes located in 50 T1D-associated GWAS loci using a published RNA sequencing dataset. We find that 336 out of 857 genes are expressed in human islets and that many of these interact in protein networks. Finally, the potential pathogenetic roles of some candidate genes will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5:219–26.

    Article  PubMed  CAS  Google Scholar 

  2. Mathis D, Vence L, Benoist C. Beta-cell death during progression to diabetes. Nature. 2001;414:792–8.

    Article  PubMed  CAS  Google Scholar 

  3. Nerup J, Mandrup-Poulsen T, Helqvist S, Andersen HU, Pociot F, Reimers JI, et al. On the pathogenesis of IDDM. Diabetologia. 1994;37 Suppl 2:S82–9.

    Article  PubMed  Google Scholar 

  4. Van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev. 2011;91:79–118.

    Article  PubMed  Google Scholar 

  5. Liu EH, Digon III BJ, Hirshberg B, Chang R, Wood BJ, Neeman Z, et al. Pancreatic beta cell function persists in many patients with chronic type 1 diabetes, but is not dramatically improved by prolonged immunosuppression and euglycaemia from a beta cell allograft. Diabetologia. 2009;52:1369–80.

    Article  PubMed  CAS  Google Scholar 

  6. Coppieters KT, Wiberg A, Amirian N, Kay TW, von Herrath MG. Persistent glucose transporter expression on pancreatic beta cells from longstanding type 1 diabetic individuals. Diabetes Metab Res Rev. 2011;27:746–54.

    Article  PubMed  CAS  Google Scholar 

  7. Keenan HA, Sun JK, Levine J, Doria A, Aiello LP, Eisenbarth G, et al. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin medalist study. Diabetes. 2010;59:2846–53.

    Article  PubMed  CAS  Google Scholar 

  8. Nerup J, Platz P, Andersen OO, Christy M, Lyngsoe J, Poulsen JE, et al. HL-A antigens and diabetes mellitus. Lancet. 1974;2:864–6.

    Article  PubMed  CAS  Google Scholar 

  9. Pociot F, Akolkar B, Concannon P, Erlich HA, Julier C, Morahan G, et al. Genetics of type 1 diabetes: what's next? Diabetes. 2010;59:1561–71.

    Article  PubMed  CAS  Google Scholar 

  10. Polychronakos C, Li Q. Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet. 2011;12:781–92.

    Article  PubMed  CAS  Google Scholar 

  11. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7.

    Article  PubMed  CAS  Google Scholar 

  12. Visser M, Kayser M, Palstra RJ. HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter. Genome Res. 2012;22:446–55.

    Article  PubMed  CAS  Google Scholar 

  13. Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes. N Engl J Med. 2009;360:1646–54.

    Article  PubMed  CAS  Google Scholar 

  14. Burn GL, Svensson L, Sanchez-Blanco C, Saini M, Cope AP. Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Lett. 2011;585:3689–98.

    Article  PubMed  CAS  Google Scholar 

  15. Aarnisalo J, Treszl A, Svec P, Marttila J, Oling V, Simell O, et al. Reduced CD4 + T cell activation in children with type 1 diabetes carrying the PTPN22/Lyp 620Trp variant. J Autoimmun. 2008;31:13–21.

    Article  PubMed  CAS  Google Scholar 

  16. Vang T, Congia M, Macis MD, Musumeci L, Orru V, Zavattari P, et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet. 2005;37:1317–9.

    Article  PubMed  CAS  Google Scholar 

  17. Zikherman J, Hermiston M, Steiner D, Hasegawa K, Chan A, Weiss A. PTPN22 deficiency cooperates with the CD45 E613R allele to break tolerance on a nonautoimmune background. J Immunol. 2009;182:4093–106.

    Article  PubMed  CAS  Google Scholar 

  18. Donath MY, Storling J, Berchtold LA, Billestrup N, Mandrup-Poulsen T. Cytokines and beta-cell biology: from concept to clinical translation. Endocr Rev. 2008;29:334–50.

    Article  PubMed  CAS  Google Scholar 

  19. Padgett LE, Broniowska KA, Hansen PA, Corbett JA, Tse HM. The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann NY Acad Sci. 2013;1281:16–35.

    Article  PubMed  CAS  Google Scholar 

  20. Cardozo AK, Heimberg H, Heremans Y, Leeman R, Kutlu B, Kruhoffer M, et al. A comprehensive analysis of cytokine-induced and nuclear factor-kappa B-dependent genes in primary rat pancreatic beta-cells. J Biol Chem. 2001;276:48879–86.

    Article  PubMed  CAS  Google Scholar 

  21. Cardozo AK, Kruhoffer M, Leeman R, Orntoft T, Eizirik DL. Identification of novel cytokine-induced genes in pancreatic beta-cells by high-density oligonucleotide arrays. Diabetes. 2001;50:909–20.

    Article  PubMed  CAS  Google Scholar 

  22. •• Eizirik DL, Sammeth M, Bouckenooghe T, Bottu G, Sisino G, Igoillo-Esteve M, et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of proinflammatory cytokines. PLoS Genet. 2012;8:e1002552. This study provides the hirtheto most complete gene transcription analysis performed on isolated human islets under control conditions and following exposure to proinflammatory cytokines.

    Article  PubMed  CAS  Google Scholar 

  23. Kutlu B, Cardozo AK, Darville MI, Kruhoffer M, Magnusson N, Orntoft T, et al. Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells. Diabetes. 2003;52:2701–19.

    Article  PubMed  CAS  Google Scholar 

  24. Kutlu B, Burdick D, Baxter D, Rasschaert J, Flamez D, Eizirik DL, et al. Detailed transcriptome atlas of the pancreatic beta cell. BMC Med Genomics. 2009;2:3.

    Article  PubMed  Google Scholar 

  25. Shalev A, Pise-Masison CA, Radonovich M, Hoffmann SC, Hirshberg B, Brady JN, et al. Oligonucleotide microarray analysis of intact human pancreatic islets: identification of glucose-responsive genes and a highly regulated TGFbeta signaling pathway. Endocrinology. 2002;143:3695–8.

    Article  PubMed  CAS  Google Scholar 

  26. Kieffer TJ, Habener JF. The glucagon-like peptides. Endocr Rev. 1999;20:876–913.

    Article  PubMed  CAS  Google Scholar 

  27. Whalley NM, Pritchard LE, Smith DM, White A. Processing of proglucagon to GLP-1 in pancreatic alpha-cells: is this a paracrine mechanism enabling GLP-1 to act on beta-cells? J Endocrinol. 2011;211:99–106.

    Article  PubMed  CAS  Google Scholar 

  28. Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3:153–65.

    Article  PubMed  CAS  Google Scholar 

  29. Yang YH, Szabat M, Bragagnini C, Kott K, Helgason CD, Hoffman BG, et al. Paracrine signalling loops in adult human and mouse pancreatic islets: netrins modulate beta cell apoptosis signalling via dependence receptors. Diabetologia. 2011;54:828–42.

    Article  PubMed  CAS  Google Scholar 

  30. •• Bergholdt R, Brorsson C, Palleja A, Berchtold LA, Floyel T, Bang-Berthelsen CH, et al. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression. Diabetes. 2012;61:954–62. This article provides evidence that many genes located in type 1 diabetes-associated loci interact in functional networks and highlights the importance of studying complex diseases including diabetes from a network perspective.

    Article  PubMed  CAS  Google Scholar 

  31. Calderon B, Unanue ER. Antigen presentation events in autoimmune diabetes. Curr Opin Immunol. 2012;24:119–28.

    Article  PubMed  CAS  Google Scholar 

  32. Coffey LC, Berman DM, Willman MA, Kenyon NS. Immune cell populations in nonhuman primate islets. Cell Transplant. 2009;18:1213–22.

    Article  PubMed  Google Scholar 

  33. Lacy PE, Finke EH. Activation of intraislet lymphoid cells causes destruction of islet cells. Am J Pathol. 1991;138:1183–90.

    PubMed  CAS  Google Scholar 

  34. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, et al. A network-based analysis of systemic inflammation in humans. Nature. 2005;437:1032–7.

    Article  PubMed  CAS  Google Scholar 

  35. Karni S, Soreq H, Sharan R. A network-based method for predicting disease-causing genes. J Comput Biol. 2009;16:181–9.

    Article  PubMed  CAS  Google Scholar 

  36. Nibbe RK, Koyuturk M, Chance MR. An integrative -omics approach to identify functional sub-networks in human colorectal cancer. PLoS Comput Biol. 2010;6:e1000639.

    Article  PubMed  Google Scholar 

  37. Perry JR, McCarthy MI, Hattersley AT, Zeggini E, Weedon MN, Frayling TM. Interrogating type 2 diabetes genome-wide association data using a biological pathway-based approach. Diabetes. 2009;58:1463–7.

    Article  PubMed  CAS  Google Scholar 

  38. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25:25–9.

    Article  PubMed  CAS  Google Scholar 

  39. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32:D277–80.

    Article  PubMed  CAS  Google Scholar 

  40. Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification of breast cancer metastasis. Mol Syst Biol. 2007;3:140.

    Article  PubMed  Google Scholar 

  41. •• Berchtold LA, Storling ZM, Ortis F, Lage K, Bang-Berthelsen C, Bergholdt R, et al. Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and beta-cell apoptosis. Proc Natl Acad Sci U S A. 2011;108:E681–8. This study identified novel type 1 diabetes candidate genes by integrating genome-wide linkage data with protein-protein interactions. Functional validation of 1 candidate, HIP14, in β-cells confirmed the validity of such approaches to find new candidates.

    Article  PubMed  CAS  Google Scholar 

  42. Lage K, Karlberg EO, Storling ZM, Olason PI, Pedersen AG, Rigina O, et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol. 2007;25:309–16.

    Article  PubMed  CAS  Google Scholar 

  43. Hodson DJ, Janas ML, Galloway A, Bell SE, Andrews S, Li CM, et al. Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nat Immunol. 2010;11:717–24.

    Article  PubMed  CAS  Google Scholar 

  44. Hacker C, Valchanova R, Adams S, Munz B. ZFP36L1 is regulated by growth factors and cytokines in keratinocytes and influences their VEGF production. Growth Factors. 2010;28L178–90.

  45. Corps AN, Brown KD. Insulin and insulin-like growth factor I stimulate expression of the primary response gene cMG1/TIS11b by a wortmannin-sensitive pathway in RIE-1 cells. FEBS Lett. 1995;368:160–4.

    Article  PubMed  CAS  Google Scholar 

  46. Wallace C, Smyth DJ, Maisuria-Armer M, Walker NM, Todd JA, Clayton DG. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat Genet. 2010;42:68–71.

    Article  PubMed  CAS  Google Scholar 

  47. Elbers CC, van Eijk KR, Franke L, Mulder F, van der Schouw YT, Wijmenga C, et al. Using genome-wide pathway analysis to unravel the etiology of complex diseases. Genet Epidemiol. 2009;33:419–31.

    Article  PubMed  Google Scholar 

  48. Gao S, Wang X. Predicting type 1 diabetes candidate genes using human protein-protein interaction networks. J Comput Sci Syst Biol. 2009;2:133.

    Article  PubMed  CAS  Google Scholar 

  49. Lee Y, Li H, Li J, Rebman E, Achour I, Regan KE, et al. Network models of genome-wide association studies uncover the topological centrality of protein interactions in complex diseases. J Am Med Inform Assoc. 2013;20:619–29.

    Google Scholar 

  50. Sharma A, Chavali S, Tabassum R, Tandon N, Bharadwaj D. Gene prioritization in Type 2 diabetes using domain interactions and network analysis. BMC Genomics. 2010;11:84.

    Article  PubMed  Google Scholar 

  51. Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, Benita Y, et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet. 2011;7:e1001273.

    Article  PubMed  CAS  Google Scholar 

  52. • Moore F, Colli ML, Cnop M, Esteve MI, Cardozo AK, Cunha DA, et al. PTPN2, a candidate gene for type 1 diabetes, modulates interferon-gamma-induced pancreatic beta-cell apoptosis. Diabetes. 2009;58:1283–91. This article demonstrates that the type 1 diabetes candidate gene PTPN2 has important biologicals effects in β-cells that are of relevance to the immune-mediated β cell destruction seen in type 1 diabetes.

    Article  PubMed  CAS  Google Scholar 

  53. Santin I, Moore F, Colli ML, Gurzov EN, Marselli L, Marchetti P, et al. PTPN2, a candidate gene for type 1 diabetes, modulates pancreatic beta-cell apoptosis via regulation of the BH3-only protein Bim. Diabetes. 2011;60:3279–88.

    Article  PubMed  CAS  Google Scholar 

  54. Colli ML, Moore F, Gurzov EN, Ortis F, Eizirik DL. MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double-stranded RNA. Hum Mol Genet. 2010;19:135–46.

    Article  PubMed  CAS  Google Scholar 

  55. Grey ST, Arvelo MB, Hasenkamp W, Bach FH, Ferran C. A20 inhibits cytokine-induced apoptosis and nuclear factor kappaB-dependent gene activation in islets. J Exp Med. 1999;190:1135–46.

    Article  PubMed  CAS  Google Scholar 

  56. Liuwantara D, Elliot M, Smith MW, Yam AO, Walters SN, Marino E, et al. Nuclear factor-kappaB regulates beta-cell death: a critical role for A20 in beta-cell protection. Diabetes. 2006;55:2491–501.

    Article  PubMed  CAS  Google Scholar 

  57. Ortis F, Pirot P, Naamane N, Kreins AY, Rasschaert J, Moore F, et al. Induction of nuclear factor-kappaB and its downstream genes by TNF-alpha and IL-1beta has a proapoptotic role in pancreatic beta cells. Diabetologia. 2008;51:1213–25.

    Article  PubMed  CAS  Google Scholar 

  58. Skog O, Korsgren O, Frisk G. Modulation of innate immunity in human pancreatic islets infected with enterovirus in vitro. J Med Virol. 2011;83:658–64.

    Article  PubMed  CAS  Google Scholar 

  59. Downes K, Pekalski M, Angus KL, Hardy M, Nutland S, Smyth DJ, et al. Reduced expression of IFIH1 is protective for type 1 diabetes. PLoS One. 2010;5:e12646.

    Google Scholar 

  60. Shigemoto T, Kageyama M, Hirai R, Zheng J, Yoneyama M, Fujita T. Identification of loss of function mutations in human genes encoding RIG-I and MDA5: implications for resistance to type I diabetes. J Biol Chem. 2009;284:13348–54.

    Article  PubMed  CAS  Google Scholar 

  61. Guerra S, Najera JL, Gonzalez JM, Lopez-Fernandez LA, Climent N, Gatell JM, et al. Distinct gene expression profiling after infection of immature human monocyte-derived dendritic cells by the attenuated poxvirus vectors MVA and NYVAC. J Virol. 2007;81:8707–21.

    Article  PubMed  CAS  Google Scholar 

  62. Kramer M, Schulte BM, Eleveld-Trancikova D, van Hout-Kuijer M, Toonen LW, Tel J, et al. Cross-talk between human dendritic cell subsets influences expression of RNA sensors and inhibits picornavirus infection. J Innate Immun. 2010;2:360–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Joachim Størling and Caroline Anna Brorsson declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Storling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storling, J., Brorsson, C.A. Candidate Genes Expressed in Human Islets and Their Role in the Pathogenesis of Type 1 Diabetes. Curr Diab Rep 13, 633–641 (2013). https://doi.org/10.1007/s11892-013-0408-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-013-0408-6

Keywords

Navigation