Skip to main content
Log in

Some general aspects of a gas-solid fluidized bed using digital image analysis

  • Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Digital image analysis (DIA) was used to achieve some information related to aspect ratio of the bubbles, bed expansion fluctuations and the emulsion area at different gas velocities and different bed heights. All experiments were done in a pseudo-2D gas-solid fluidized bed. Variations of the bubble fraction at different gas velocities and different bed heights were investigated. It was found that when the excess gas velocity increases, the dimensionless bed height increases linearly with slope of about 0.4 for LLDPE particles. To validate the analysis, the bubble diameter achieved by DIA results in this work was compared with the bubble diameter correlation presented by Shen et al. Bubble aspect ratio in different heights of the bed was extracted through image analysis, and it was observed that the bubble aspect ratio first increases with the bed height and near the freeboard becomes flattened. Results of the experiments show that the emulsion phase becomes more expanded at higher excess gas velocities. As demonstrated by the analysis results, by increasing the bed height, bubble fraction parameter is decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kunii and O. Levenspiel, Fluidization Engineering, Elsevier (2013).

    Google Scholar 

  2. J. Nieuwland, M. Veenendaal, J. Kuipers and W. Van Swaaij, ChEnS, 51, 4087 (1996).

    CAS  Google Scholar 

  3. O. Olaofe, K. Buist, N. Deen, M. van der Hoef and J. Kuipers, Powder Technol., 244, 61 (2013).

    Article  CAS  Google Scholar 

  4. A. Busciglio, G. Vella, G. Micale and L. Rizzuti, Chem. Eng. J., 140, 398 (2008).

    Article  CAS  Google Scholar 

  5. S. Mori and C. Wen, AIChE J., 21, 109 (1975).

    Article  CAS  Google Scholar 

  6. P. Rowe and B. Partridge, Chem. Eng. Res. Des., 75, S116 (1997).

    Article  Google Scholar 

  7. J. Kuipers, W. Prins and W. Van Swaaij, ChEnS, 46, 2881 (1991).

    CAS  Google Scholar 

  8. K. Lim, P. Agarwal and B. O’neill, Powder Technol., 60, 159 (1990).

    Article  CAS  Google Scholar 

  9. A. S. Hull, Z. Chen, J.W. Fritz and P. K. Agarwal, Powder Technol., 103, 230 (1999).

    Article  CAS  Google Scholar 

  10. G.R. Caicedo, J. J. P. Marqués, M. G. Ruiz and J. G. Soler, Chem. Eng. Process., 42, 9 (2003).

    Article  Google Scholar 

  11. M. Goldschmidt, J. Link, S. Mellema and J. Kuipers, Powder Technol., 138, 135 (2003).

    Article  CAS  Google Scholar 

  12. L. Shen, F. Johnsson and B. Leckner, ChEnS, 59, 2607 (2004).

    CAS  Google Scholar 

  13. J.A. Laverman, I. Roghair, M. v. S. Annaland and H. Kuipers, CJChE, 86, 523 (2008).

    CAS  Google Scholar 

  14. A. Busciglio, G. Vella, G. Micale and L. Rizzuti, Chem. Eng. J., 148, 145 (2009).

    Article  CAS  Google Scholar 

  15. T.W. Asegehegn, M. Schreiber and H. J. Krautz, Powder Technol., 210, 248 (2011).

    Article  CAS  Google Scholar 

  16. S. Movahedirad, A. Molaei Dehkordi, M. Banaei, N. Deen, M. van Sint Annaland and J. Kuipers, Ind. Eng. Chem. Res., 51, 6571 (2012).

    Article  CAS  Google Scholar 

  17. S. Movahedirad, M. Ghafari and A. Molaei Dehkordi, Chem. Eng. Technol., 37, 103 (2014).

    Article  CAS  Google Scholar 

  18. J. Guardiola, G. Ramos and R. Elvira, ChEnS, 95, 33 (2013).

    CAS  Google Scholar 

  19. D. Geldart, Powder Technol., 7, 285 (1973).

    Article  CAS  Google Scholar 

  20. J. Link, L. Cuypers, N. Deen and J. Kuipers, ChEnS, 60, 3425 (2005).

    CAS  Google Scholar 

  21. C. A. Schneider, W. S. Rasband and K.W. Eliceiri, Nat. Methods, 9, 671 (2012).

    Article  CAS  Google Scholar 

  22. T. Ridler and S. Calvard, ITSMC, 8, 630 (1978).

    Google Scholar 

  23. S. Movahedirad, M. Ghafari and A. M. Dehkordi, Chem. Eng. Technol., 35, 929 (2012).

    Article  CAS  Google Scholar 

  24. S. Movahedirad, A. Molaei Dehkordi, N. G. Deen, M. van Sint Annaland and J. Kuipers, AIChE J., 58, 3306 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Movahedirad.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi-Asl, M., Azhgan, S. & Movahedirad, S. Some general aspects of a gas-solid fluidized bed using digital image analysis. Korean J. Chem. Eng. 35, 613–620 (2018). https://doi.org/10.1007/s11814-017-0291-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0291-y

Keywords

Navigation