Skip to main content
Log in

Carbon dynamics in woody biomass of forest ecosystem in China with forest management practices under future climate change and rising CO2 concentration

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with rare investigation of forest carbon stocks influenced by forest management practices and climate change at regional scale. In this study, a general integrative approach was used to simulate spatial and temporal variations of woody biomass and harvested biomass of forest in China during the 21st century under different scenarios of climate and CO2 concentration changes and management tasks by coupling Integrated Terrestrial Ecosystem Carbon budget (InTEC) model with Global Forest Model (G4M). The results showed that forest management practices have more predominant effects on forest stem stocking biomass than climate and CO2 concentration change. Meanwhile, the concurrent future changes in climate and CO2 concentration will enhance the amounts of stem stocking biomass in forests of China by 12%–23% during 2001–2100 relative to that with climate change only. The task for maximizing stem stocking biomass will dramatically enhance the stem stocking biomass from 2001–2100, while the task for maximum average increment will result in an increment of stem stocking biomass before 2050 then decline. The difference of woody biomass responding to forest management tasks was owing to the current age structure of forests in China. Meanwhile, the sensitivity of long-term woody biomass to management practices for different forest types (coniferous forest, mixed forest and deciduous forest) under changing climate and CO2 concentration was also analyzed. In addition, longer rotation length under future climate change and rising CO2 concentration scenario will dramatically increase the woody biomass of China during 2001–2100. Therefore, our estimation indicated that taking the role of forest management in the carbon cycle into the consideration at regional or national level is very important to project the forest carbon sequestration under future climate change and rising atmospheric CO2 concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsworth E A, Long S P, 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2): 351–372. doi: 10.1111/j.1469-8137.2004.01224.x

    Article  Google Scholar 

  • Berthelot M, Friedlingstein P, Ciais P et al., 2002. Global response of the terrestrial biosphere to CO2 and climate change using a coupled climate-carbon cycle model. Global Biogeochemical Cycles, 16(4): 1084. doi: 10.1029/2001GB001827

    Article  Google Scholar 

  • Bu R C, He H S, Hu Y M et al., 2008. Using the LANDIS model to evaluate forest harvesting and planting strategies under possible warming climates in northeastern China. Forest Ecology and Management, 254(3): 407–419. doi: 10.1016/j.foreco.2007.09.080

    Article  Google Scholar 

  • Caldwell I M, Maclaren V W, Chen J M et al., 2007. An integrated assessment model of carbon sequestration benefits: A case study of Liping County, China. Journal of Environmental Management, 85(3): 757–773. doi: 10.1016/j.jenvman.2006.08.020

    Article  Google Scholar 

  • Cao M, Woodward F I, 1998. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393(6682): 249–252. doi: 10.1038/30460

    Article  Google Scholar 

  • Chen J M, Chen W J, Liu J et al., 2000. Annual carbon balance of Canada’s forests during 1895-1996. Global Biogeochemical Cycles, 14(3): 839–849. doi: 10.1029/1999GB001207

    Article  Google Scholar 

  • Chen J M, Ju W M, Cihlar J et al., 2003. Spatial distribution of carbon sources and sinks in Canada’s forests. Tellus B, 55(2): 622–641. doi: 10.1034/j.1600-0889.2003.00036.x

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N et al., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058): 529–533. doi: 10.1038/nature03972

    Article  Google Scholar 

  • Coomes D A, Holdaway R J, Kobe R K et al., 2012. A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests. Journal of Ecology, 100(1): 42–64. doi: 10.1111/j.1365-2745.2011.01920.x

    Article  Google Scholar 

  • Cooper C F, 1983. Carbon storage in managed forests. Canadian Journal of Forest Research, 13(1): 155–166. doi: 10.1139/x83-022

    Article  Google Scholar 

  • Cramer W, Bondeau A, Woodward F I et al., 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 7(4): 357–373. doi:10.1046/j.1365-2486.2001.00383.x

    Article  Google Scholar 

  • Eggers J, Lindner M, Zudin S et al., 2008. Impact of changing wood demand, climate and land use on European forest resources and carbon stocks during the 21st century. Global Change Biology, 14(10): 2288–2303. doi: 10.1111/j.1365-2486.2008.01653.x

    Article  Google Scholar 

  • Fang J Y, Chen A P, Peng C H et al., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292(5525): 2320–2322. doi: 10.1126/science.1058629

    Article  Google Scholar 

  • Fang J Y, Piao S L, Field C B et al., 2003. Increasing net primary production in China from 1982-1999. Frontiers in Ecology and the Environment, 1(6): 293–297. doi: 10.1890/1540-9295(2003)001[0294:INPPIC]2.0.CO;2

    Article  Google Scholar 

  • Farquhar G D, von Caemmerer S, Berry J A, 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1): 78–90. doi: 10.1007/BF00386231

    Article  Google Scholar 

  • Feng X, Liu G, Chen J M et al., 2007. Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. Journal of Environmental Management, 85(3): 563–573. doi: 10.1016/j.jenvman.2006.09.021

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations), 2005. FAOSTAT Database. Available at: http://faostat.fao.org

    Google Scholar 

  • Giorgi F, Mearns L O, 2002. Calculation of average, uncertainty range and reliability of regional climate changes from AOGCM simulations via the’ Reliability Ensemble Averaging (REA)’ method. Journal of Climate, 15(10): 1141–1158. doi: 10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2

    Article  Google Scholar 

  • Giorgi F, Mearns L O, 2003. Probability of regional climate change based on the Reliability Ensemble Averaging (REA) method. Geophysical Research Letters, 30(12): 1629–1632. doi: 10.1029/2003GL017130

    Article  Google Scholar 

  • Govinda A, Chen, J M, Bernierc P et al., 2011. Spatially distributed modeling of the long-term carbon balance of a boreal landscape. Ecological Modelling, 222(15): 2780–2795. doi: 10.1016/j.ecolmodel.2011.04.007

    Article  Google Scholar 

  • Gusti M, 2010. An Algorithm for Simulation of Forest Management Decisions in the Global Forest Model. Artificial Intelligence, 4: 45–49.

    Google Scholar 

  • Gusti M, Kindermann G, 2011. An Approach to Modeling Land Use Change and Forest Management on a Global Scale. Austria: International Institute for Applied Systems Analysis.

    Google Scholar 

  • He H S, Larsen D R, Mladenoff D J, 2002. Exploring component based approaches in forest landscape modeling. Environmental Modelling and Software, 17(6): 519–529. doi: 10.1016/S1364-8152(02)00014-2

    Article  Google Scholar 

  • Hutchinson M F, 2002. ANUSPLIN Version 4.2 User Guide. Canberra: Australian National University, 1–48.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), 2007. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Jarvis P G, 1998. European Forests and Global Change: The Likely Impacts of Rising CO 2 and Temperature. Cambridge: Cambridge University Press, 1–398.

    Google Scholar 

  • Joyce L A, Birdsey R, 2000. The Impacts of Climate Change on America’s Forests: A Technical Document Supporting the 2000 USDA Forest Service RPA Assessment. Fort Collins: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • Ju W M, Chen J M, 2005. Distribution of soil carbon stocks in Canada’s forests and wetlands simulated based on drainage class, topography and remotely sensed vegetation parameters. Hydrological Processes, 19(1): 77–94. doi: 10.1002/hyp.5775

    Article  Google Scholar 

  • Ju W M, Chen J M, Black T A et al., 2006. Modeling coupled water and carbon fluxes in a boreal aspen forest. Agricultural and Forest Meteorology, 140(1–4): 136–151. doi: 10.1016/j.agrformet.2006.08.008

    Article  Google Scholar 

  • Ju W M, Chen J M, Harvey D et al., 2007. Future carbon balance of China’s forests under climate change and increasing CO2. Journal of Environmental Management, 85(3): 538–562. doi: 10.1016/j.jenvman.2006.04.028

    Article  Google Scholar 

  • Ju W M, Chen J M, 2008. Simulating the effects of past changes in climate, atmospheric composition, and fire disturbance on soil carbon in Canada’s forests and wetlands. Global Biogeochemical Cycles, 22(3): GB3010. doi: 10.1029/2007GB002935

    Article  Google Scholar 

  • Ju W M, Chen J M, Black T A et al., 2010. Spatially simulating changes of soil water content and their effects on carbon sequestration in Canada’s forests and wetlands. Tellus, 62(3): 140–159. doi: 10.1111/j.1600-0889.2010.00459.x

    Article  Google Scholar 

  • Kaipainen T, Liski J, Pussinen A et al., 2004. Managing carbon sinks by changing rotation length in European forests. Environmental Science and Policy, 7(3): 205–219. doi: 10.1016/j.envsci.2004.03.001

    Article  Google Scholar 

  • Karjalainen T, Pussinen A, Liski J et al., 2003. Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget. Forest Policy and Economics, 5(2): 141–155. doi: 10.1016/S1389-9341(03)00021-2

    Article  Google Scholar 

  • Kindermann G, Obersteiner M, Rametsteiner E et al., 2006. Predicting the Deforestation-Trend under Different Carbon-Prices. Carbon Balance and Management, 1(15): 1–17. doi: 10.1186/1750-0680-1-15

    Google Scholar 

  • Kindermann G, Obersteiner M, Sohngen B et al., 2008. Global cost estimates of reducing carbon emissions through avoided deforestation. Proceedings of the National Academy of Sciences of the United States of America, 105(30): 10302–10307. doi: 10.1073/pnas.0710616105

    Article  Google Scholar 

  • Kindermann G, Schörghuber S, Linkosalo T et al., 2011. Potential Woody Biomass and Increments in the European Union until 2100. Austria: International Institute for Applied Systems Analysis.

    Google Scholar 

  • Liski J, Pussinen A, Pingoud K et al., 2001. Which rotationlength is favourable for carbon sequestration. Canadian Journal of Forest Research, 31(11): 2004–2013. doi: 10.1139/x01-140

    Article  Google Scholar 

  • Liu Z L, Fang S Z, Liu D et al., 2011. Influence of thinning time and density on sprout development, biomass production and energy stocks of sawtooth oak stumps. Forest Ecology and Management, 262(2): 299–306. doi: 10.1016/j.foreco.2011.03.035

    Article  Google Scholar 

  • Long S P, Ainsworth E A, Rogers A et al., 2004. Rising atmospheric carbon dioxide: plants face the future. Annual Review of Plant Biology, 55: 591–628. doi: 10.1146/annurev.arplant.55.031903.141610

    Article  Google Scholar 

  • Luo T X, Li W H, Zhu H Z, 2002. Estimated biomass and productivity of natural vegetation on the Tibetan plateau. Ecological Applications, 12(4): 980–997. doi: 10.2307/3061031

    Article  Google Scholar 

  • Luo Tianxiang, 1996. Patterns of Net Primary Productivity for Chinese Major Forest Types and Its Mathematical Models. Beijing: Commission for Integrated Survey of Natural Resources, Chinese Academy of Sciences. (in Chinese)

    Google Scholar 

  • Mäkipää R, Karjalainen T, Pussinen A et al., 1999. Effects of climate change and nitrogen deposition on the carbon sequestration of a forest ecosystem in the boreal zone. Canadian Journal of Forest Research, 29(10): 1490–1501. doi: 10.1139/cjfr-29-10-1490

    Article  Google Scholar 

  • McGuire A D, Sitch S, Clein J S et al., 2001. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate, and land-use effects with four process-based ecosystem models. Global Biogeochemical Cycles, 15(1): 183–206. doi: 10.1029/2000GB001298

    Article  Google Scholar 

  • Melillo J M, Mcguire A D, Kicklighter D W et al., 1993. Global climate-change and terrestrial net primary production. Nature, 363(6426): 234–240. doi: 10.1038/363234a0

    Article  Google Scholar 

  • Norby R J, DeLucia E H, Gielen B et al., 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America, 102(50): 18052–18056. doi: 10.1073/pnas.0509478102

    Article  Google Scholar 

  • Pacala S W, Socolow R, 2004. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305(5686): 968–972. doi: 10.1126/science.1100103

    Article  Google Scholar 

  • Parton W J, Scurlock J M O, Ojima D S et al., 1993. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 7(4): 785–809. doi: 10.1029/93GB02042

    Article  Google Scholar 

  • Pussinen A, Karjalainen T, Mäkipää R et al., 2002. Forest carbon sequestration and harvest in Scots pine stand under different climate and nitrogen deposition scenarios. Forest Ecology and Management, 158(1–3): 103–115. doi: 10.1029/93GB02042

    Article  Google Scholar 

  • Ranatunga K, Keenan R J, Wullshchleger S D et al., 2008. Effects of harvest management practices on forest biomass and soil carbon in eucalypt forests in New South Wales, Australia: Simulations with the forest succession model LINKAGES. Forest Ecology and Management, 255(7): 2407–2415. doi: 10.1016/j.foreco.2008.01.002

    Article  Google Scholar 

  • Rathgeber C, Nicault A, Guiot J et al., 2000. Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Global and Planetary Change, 26(4): 405–421. doi: 10.1016/S0921-8181(00)00053-9

    Article  Google Scholar 

  • Seely B, Welham C, Kimmins H, 2002. Carbon sequestration in a boreal forest ecosystem: Results from the ecosystem simulation model. Forest Ecology and Management, 169(1–2): 123–135. doi: 10.1016/S0378-1127(02)00303-1

    Article  Google Scholar 

  • Shang Z B, He H S, Xi W M et al., 2012. Integrating LANDIS model and a multi-criteria decision-making approach to evaluate cumulative effects of forest management in the Missouri Ozarks, USA. Ecological Modelling, 229: 50–63. doi: 10.1016/j.ecolmodel.2011.08.014

    Article  Google Scholar 

  • Shanin V N, Komarov A S, Mikhailov A V et al., 2011. Modelling carbon and nitrogen dynamics in forest ecosystems of Central Russia under different climate change scenarios and forest management regimes. Ecological Modelling, 222(14): 2262–2275. doi: 10.1016/j.ecolmodel.2010.11.009

    Article  Google Scholar 

  • Shao Y, Pan J, Yang L et al., 2007. Tests of soil organic carbon density modeled by InTEC model in China’s forest ecosystems. Journal of Environmental Management, 85(3): 696–701. doi: 10.1016/j.jenvman.2006.09.006

    Article  Google Scholar 

  • Simioni G, Ritson P, Kirschbaum M U F et al., 2009. The carbon budget of pinus radiata plantations in south-western Australia under four climate change scenarios. Tree Physiology, 29(9): 1081–1093. doi: 10.1093/treephys/tpp049.

    Article  Google Scholar 

  • State Forestry Administration, 1999. China Forestry Yearbook: 1998–2003. Beijing: China Forestry Publishing House, 1–783. (in Chinese)

    Google Scholar 

  • Thomas S C, Malczewski G, Saprunoff M, 2007. Assessing the potential of native tree species for carbon sequestration forestry in Northeast China. Journal of Environmental Management, 85(3): 663–671. doi: 10.1016/j.jenvman.2006.04.027

    Article  Google Scholar 

  • Thornton P E, Lamarque J F, Rosenbloom N A et al., 2007. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles, 21(4): GB4018. doi:10.1029/2006GB002868

    Article  Google Scholar 

  • Wang S Q, Chen J M, Ju W M et al., 2007. Carbon sinks and sources in China’s forests during 1901–2001. Journal of Environmental Management, 85(3): 524–537. doi: 10.1016/j.jenvman.2006.09.019

    Article  Google Scholar 

  • Wang S Q, Zhou L, Chen J M et al., 2011. Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance. Journal of Environmental Management, 92(6): 1651–1662. doi: 10.1016/j.jenvman.2011.01.024

    Article  Google Scholar 

  • Wang W F, Wei X H, Liao W M et al., 2012. Evaluation of the effects of forest management strategies on carbon sequestration in evergreen broad-leaved (Phoebe bournei) plantation forests using FORECAST ecosystem model. Forest Ecology and Management, in press. doi: 10.1016/j.foreco.2012.06.044

    Google Scholar 

  • White A, Cannell M G R, Friend A D, 2000. The high-latitude terrestrial carbon sink: A model analysis. Global Change Biology, 6(2): 227–245. doi: 10.1046/j.1365-2486.2000.00302.x

    Article  Google Scholar 

  • Xu Y, Gao X J, Giorgi F, 2009. Upgrades to the reliability ensemble averaging method for producing probabilistic climate change projections. Climate Research, 41(1): 61–81. doi: 10.3354/cr00835

    Google Scholar 

  • Yang L X, Pan J J, Shao Y H et al., 2007. Soil organic carbon decomposition and carbon pools in temperate and sub-tropical forests in China. Journal of Environmental Management, 85(3): 690–695. doi: 10.1016/j.jenvman.2006.09.011

    Article  Google Scholar 

  • Yao J, He X, Wang A et al., 2012. Influence of Forest Management Regimes on Forest Dynamics in the Upstream Region of the Hun River in Northeastern China. PLoS ONE, 7(6): e39058. doi: 10.1371/journal.pone.0039058

    Article  Google Scholar 

  • Yu Guirui, He Honglin, Liu Xinan et al., 2004. Atlas for Spatialized Information of Terrestrial Ecosystem in China: Volume of Climatological Elements. Beijing: China Meteorological Press, 1–317. (in Chinese)

    Google Scholar 

  • Zeeman M J, Hiller R, Gilgen A K et al., 2010. Management and climate impacts on net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland. Agricultural and Forest Meteorology, 150(4): 519–530. doi: 10.1016/j.agrformet.2010.01.011

    Article  Google Scholar 

  • Zeng N, Qian H, Rödenbeck C et al., 2005. Impact of 1998–2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle. Geophysical Research Letters, 32(22): L22709. doi: 10.1029/2005GL024607

    Article  Google Scholar 

  • Zhang J B, Shangguan T L, Meng Z Q, 2011. Changes in soil carbon flux and carbon stock over a rotation of poplar plantations in northwest China. Ecological research, 26(1): 153–161. doi: 10.1007/s11284-010-0772-5

    Article  Google Scholar 

  • Zhao M F, Xiang W H, Deng X W, 2013. Application of TRIPLEX model for predicting Cunninghamia lanceolata and Pinus massoniana forest stand production in Hunan Province, southern China. Ecological Modelling, 250: 58–71. doi: 10.1016/j.ecolmodel.2012.10.011

    Article  Google Scholar 

  • Zhou L X, Conway T J, White J W C et al., 2005. Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan observatory: Background features and possible drivers, 1991–2002. Global Biogeochemical Cycles, 19(2): GB3021. doi: 10.1029/2004GB002430

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqiang Wang.

Additional information

Foundation item: Under the auspices of International Science and Technology Cooperation Project (No. 2010DFA22480), Major State Basic Research Development Program of China (No. 2010CB833503)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Wang, S., Kindermann, G. et al. Carbon dynamics in woody biomass of forest ecosystem in China with forest management practices under future climate change and rising CO2 concentration. Chin. Geogr. Sci. 23, 519–536 (2013). https://doi.org/10.1007/s11769-013-0622-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-013-0622-9

Keywords

Navigation