Skip to main content
Log in

Study on cosmogenic activation in germanium detectors for future tonne-scale CDEX experiment

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A study on cosmogenic activation in germanium was carried out to evaluate the cosmogenic background level of natural and 70Ge depleted germanium detectors. The production rates of long-lived radionuclides were calculated with Geant4 and CRY. Results were validated by comparing the simulated and experimental spectra of CDEX-1B detector. Based on the validated codes, the cosmogenic background level was predicted for further tonne-scale CDEX experiment. The suppression of cosmogenic background level could be achieved by underground germanium crystal growth and high-purity germanium detector fabrication to reach the sensitivity requirement for direct detection of dark matter. With the low cosmogenic background, new physics channels, such as solar neutrino research and neutrinoless double-beta decay experiments, were opened and the corresponding simulations and evaluations were carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Agnese, et al. (SuperCDMS Collaboration), Phys. Rev. Lett. 116, 071301 (2016).

    Article  ADS  Google Scholar 

  2. N. Abgrall, et al. (MAJORANA Collaboration), Phys. Rev. Lett. 118, 161801 (2017), arXiv: 1612.00886.

    Article  ADS  Google Scholar 

  3. M. Agostini, et al. (GERDA Collaboration), Nature 544, 47 (2017), arXiv: 1703.00570.

    Article  ADS  Google Scholar 

  4. M. Agostini, et al. (GERDA Collaboration), PoS ICHEP 282, 493 (2016).

    Google Scholar 

  5. S. R. Elliott, N. Abgrall, I. J. Arnquist, F. T. Avignone, A. S. Barabash, F. E. Bertrand, A. W. Bradley, V. Brudanin, M. Busch, M. Buuck, T. S. Caldwell, Y. D. Chan, C. D. Christofferson, P. H. Chu, C. Cuesta, J. A. Detwiler, C. Dunagan, Y. Efremenko, H. Ejiri, A. Fullmer, A. Galindo-Uribarri, T. Gilliss, G. K. Giovanetti, M. P. Green, J. Gruszko, I. S. Guinn, V. E. Guiseppe, R. Henning, E. W. Hoppe, M. A. Howe, B. R. Jasinski, K. J. Keeter, M. F. Kidd, S. I. Konovalov, R. T. Kouzes, J. Leon, A. M. Lopez, J. MacMullin, R. D. Martin, R. Massarczyk, S. J. Meijer, S. Mertens, J. L. Orrell, C. O’Shaughnessy, A. W. P. Poon, D. C. Radford, J. Rager, K. Rielage, R. G. H. Robertson, E. Romero-Romero, B. Shanks, M. Shirchenko, A. M. Suriano, D. Tedeschi, J. E. Trimble, R. L. Varner, S. Vasilyev, K. Vetter, K. Vorren, B. R. White, J. F. Wilkerson, C. Wiseman, W. Xu, E. Yakushev, C. H. Yu, V. Yumatov, and I. Zhitnikov, J. Phys.-Conf. Ser. 888, 012035 (2017), arXiv: 1610.01210.

    Article  Google Scholar 

  6. L. Wang, et al. (CDEX Collaboration), Sci. China-Phys. Mech. Astron. 60, 071011 (2017).

    Article  Google Scholar 

  7. K. J. Kang, et al. (CDEX Collaboration), Front. Phys. 8, 412 (2013), arXiv: 1303.0601.

    Article  Google Scholar 

  8. J. P. Cheng, K. J. Kang, J. M. Li, J. Li, Y. J. Li, Q. Yue, Z. Zeng, Y. H. Chen, S. Y. Wu, X. D. Ji, and H. T. Wong, Annu. Rev. Nucl. Part. Sci. 67, 231 (2017), arXiv: 1801.00587.

    Article  ADS  Google Scholar 

  9. W. Zhao, et al. (CDEX Collaboration), Phys. Rev. D 88, 052004 (2013), arXiv: 1306.4135.

    Article  ADS  Google Scholar 

  10. Q. Yue, et al. (CDEX Collaboration), Phys. Rev. D 90, 091701 (2014), arXiv: 1404.4946.

    Article  ADS  Google Scholar 

  11. W. Zhao, et al. (CDEX Collaboration), Phys. Rev. D 93, 092003 (2016), arXiv: 1601.04581.

    Article  ADS  Google Scholar 

  12. S. K. Liu, et al. (CDEX Collaboration), Phys. Rev. D 95, 052006 (2017).

    Article  ADS  Google Scholar 

  13. D. M. Mei, Z. B. Yin, and S. R. Elliott, Astropart. Phys. 31, 417 (2009), arXiv: 0903.2273.

    Article  ADS  Google Scholar 

  14. E. Armengaud, et al. (EDELWEISS Collaboration), Astropart. Phys. 91, 51 (2017).

    Article  ADS  Google Scholar 

  15. J. J. Back, and Y. A. Ramachers, Nucl. Instrum. Methods Phys. Res. Sect. A 586, 286 (2008), arXiv: 0709.3472.

    Article  ADS  Google Scholar 

  16. C. Hagmann, D. Lange, and D. Wright, IEEE Nucl. Sci. Symp. Proc. 2, 1143 (2007).

    Google Scholar 

  17. S. Agostinelli, et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 506, 250 (2003).

    Article  ADS  Google Scholar 

  18. T. H. Johnson, and J. G. Barry, Phys. Rev. 56, 219 (1939).

    Article  ADS  Google Scholar 

  19. Y. C. Wu, X. Q. Hao, Q. Yue, Y. J. Li, J. P. Cheng, K. J. Kang, Y. H. Chen, J. Li, J. M. Li, Y. L. Li, S. K. Liu, H. Ma, J. B. Ren, M. B. Shen, J. M. Wang, S. Y. Wu, T. Xue, N. Yi, X. H. Zeng, Z. Zeng, and Z. H. Zhu, Chin. Phys. C 37, 086001 (2013).

    Article  ADS  Google Scholar 

  20. J. L. Ma, Q. Yue, Q. Wang, J. Li, H. T. Wong, S. T. Lin, S. K. Liu, L. Wang, H. Jiang, L. T. Yang, L. P. Jia, J. H. Chen, and W. Zhao, Appl. Radiat. Isot. 127, 130 (2017).

    Article  Google Scholar 

  21. L. T. Yang, et al. (CDEX Collaboration), Chin. Phys. C 42, 023002 (2018), arXiv: 1710.06650.

    Article  ADS  Google Scholar 

  22. L. T. Yang, H. B. Li, H. T. Wong, M. Agartioglu, J. H. Chen, L. P. Jia, H. Jiang, J. Li, F. K. Lin, S. T. Lin, S. K. Liu, J. L. Ma, B. Sevda, V. Sharma, L. Singh, M. K. Singh, M. K. Singh, A. K. Soma, A. Sonay, S. W. Yang, L. Wang, Q. Wang, Q. Yue, and W. Zhao, Nucl. Instrum. Methods Phys. Res. Sect. A 886, 13 (2018).

    Article  ADS  Google Scholar 

  23. W. Z. Wei, D. M. Mei, and C. Zhang, Astropart. Phys. 96, 24 (2017), arXiv: 1706.05324.

    Article  ADS  Google Scholar 

  24. J. Amaré, J. Castel, S. Cebrián, I. Coarasa, C. Cuesta, T. Dafni, J. Galán, E. García, J. G. Garza, F. J. Iguaz, I. G. Irastorza, G. Luzón, M. Martínez, H. Mirallas, M. A. Oliván, Y. Ortigoza, A. Ortiz de Solórzano, J. Puimedón, E. Ruiz-Chóliz, M. L. Sarsa, J. A. Villar, and P. Villar, Astropart. Phys. 97, 96 (2018), arXiv: 1706.05818.

    Article  ADS  Google Scholar 

  25. I. Barabanov, S. Belogurov, L. Bezrukov, A. Denisov, V. Kornoukhov, and N. Sobolevsky, Nucl. Instrum. Methods Phys. Res. Sect. B 251, 115 (2006).

    Article  ADS  Google Scholar 

  26. K. H. Ackermann, et al. (GERDA Collaboration), Eur. Phys. J. C 73, 2330 (2013), arXiv: 1212.4067.

    Article  ADS  Google Scholar 

  27. N. Abgrall, et al. (MAJORANA Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 877, 314 (2018), arXiv: 1707.06255.

    Article  ADS  Google Scholar 

  28. D. Akimov, et al. (COHERENT Collaboration), Science 357, 1123 (2017).

    Article  ADS  Google Scholar 

  29. J. F. Ziegler, J. P. Biersack, and U. Littmark, SRIM/TRIM version 2006.02, https://doi.org/www.srim.org.

  30. P. S. Barbeau, J. I. Collar, and O. Tench, J. Cosmol. Astropart. Phys. 2007, 9 (2007).

    Article  Google Scholar 

  31. N. Abgrall, et al. (LEGEND Collaboration), AIP Conf. Proc. 1894, 020027 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Yue or Hao Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Yue, Q., Lin, S. et al. Study on cosmogenic activation in germanium detectors for future tonne-scale CDEX experiment. Sci. China Phys. Mech. Astron. 62, 11011 (2019). https://doi.org/10.1007/s11433-018-9215-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9215-0

Keywords

Navigation