Skip to main content
Log in

Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Biodegradable polymer was used as carbon source and biofilm support for nitrate removal from aqueous solution as an attractive alternative for biological denitrification. The objective of this paper was to investigate the denitrification performance and microbial community of a packed-bed bioreactor using poly (butanediol succinate) (PBS), a biodegradable polymer, as carbon source and biofilm support. NO3–N concentration was determined by UV spectrophotometer. NO2–N concentration was assayed by hydrochloric acid naphthyl ethylenediamine spectrophotometry method. Total organic carbon (TOC) was measured using a TOC analyzer. The morphology of the samples was observed using an environmental scanning electron microscope (ESEM). The microbial community was analyzed by pyrosequencing method. The experimental results showed that an average removal efficiency of nitrate was 95 %. ESEM observation and FTIR analysis indicated the changes of PBS granules before and after microbial utilization. Pyrosequencing results showed that Betaproteobacteria predominated, and most of PBS-degrading denitrifying bacteria were assigned to the family Comamonadaceae. Denitrifying bacteria accounted for 13.02 % in total population. The PBS granules were suitable support and carbon source for denitrifying bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3(7):e2836

    Article  Google Scholar 

  • Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci U S A 105(30):10583–10588

    Article  CAS  Google Scholar 

  • Blackall LL, Ginige MP, Hugenholtz P, Daims H, Wagner M, Keller J (2004) Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Appl Environ Microbiol 70(1):588–596

    Article  Google Scholar 

  • Blackall LL, Ginige MP, Keller J (2005) Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography. Appl Environ Microbiol 71(12):8683–8691

    Article  Google Scholar 

  • Boley A, Muller WR, Haider G (2000) Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems. Aquac Eng 22(1–2):75–85

    Article  Google Scholar 

  • Chu LB, Wang JL (2011a) Comparison of polyurethane foam and biodegradable polymer as carriers in moving bed biofilm reactor for treating wastewater with a low C/N ratio. Chemosphere 83:63–68

    Article  CAS  Google Scholar 

  • Chu LB, Wang JL (2011b) Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor. Chem Eng J 170:220–225

    Article  CAS  Google Scholar 

  • Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72(8):5181–5189

    Article  CAS  Google Scholar 

  • Heylen K, Lebbe L, De Vos P (2008) Acidovorax caeni sp. nov., a denitrifying species with genetically diverse isolates from activated sludge. Int J Syst Evol Microbiol 58:73–77

    Article  CAS  Google Scholar 

  • Hille A, He M, Ochmann C, Neu T, Horn H (2009) Application of two component biodegradable carriers in a particle-fixed biofilm airlift suspension reactor: development and structure of biofilms. Bioproc Biosyst Eng 32(1):31–39

    Article  CAS  Google Scholar 

  • Hiraishi A, Khan ST (2003) Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl Microbiol Biotechnol 61(2):103–109

    CAS  Google Scholar 

  • Huse SM, Huber JA, Morrison HG, Sogin ML, Mark Welch D (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8(7):R143.1–R143.9

    Article  Google Scholar 

  • Khan ST, Hiraishi A (2002) Diaphorobacter nitroreducens gen. nov., sp, nov., a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge. J Gen Appl Microbiol 48(6):299–308

    Article  CAS  Google Scholar 

  • Khan ST, Horiba Y, Yamamoto M, Hiraishi A (2002) Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Appl Environ Microbiol 68(7):3206–3214

    Article  CAS  Google Scholar 

  • Khardenavis AA, Kapley A, Purohit HJ (2007) Simultaneous nitrification and denitrification by diverse Diaphorobacter sp. Appl Microbiol Biotechnol 77(2):403–409

    Article  CAS  Google Scholar 

  • Kirchman DL, Cottrell MT, Lovejoy C (2010) The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ Microbiol 12(5):1132–1143

    Article  CAS  Google Scholar 

  • Lu SP, Ryu SH, Chung BS, Chung YR, Park W, Jeon CO (2007) Simplicispira limi sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 57:31–34

    Article  CAS  Google Scholar 

  • Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60(1):157–166

    Article  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen ZT, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu PG, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380

    CAS  Google Scholar 

  • Mechichi T, Stackebrandt E, Fuchs G (2003) Alicycliphilus denitrificans gen. nov., sp nov., a cyclohexanol-degrading, nitrate-reducing beta-proteobacterium. Int J Syst Evol Microbiol 53:147–152

    Article  CAS  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283–290

    CAS  Google Scholar 

  • Shen ZQ, Wang JL (2011) Biological denitrification using cross-linked starch/PCL blends as solid carbon source and biofilm carrier. Bioresour Technol 102:8835–8838

    Article  CAS  Google Scholar 

  • Tang YN, Zhou C, Ziv-El M, Rittmann BE (2011) A pH-control model for heterotrophic and hydrogen-based autotrophic denitrification. Water Res 45:232–240

    Article  CAS  Google Scholar 

  • Uroz S, Buee M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2(2):281–288

    Article  CAS  Google Scholar 

  • Walters E, Hille A, He M, Ochmann C, Horn H (2009) Simultaneous nitrification/denitrification in a biofilm airlift suspension (BAS) reactor with biodegradable carrier material. Water Res 43(18):4461–4468

    Article  CAS  Google Scholar 

  • Wang XM, Wang JL (2009) Removal of nitrate from groundwater by heterotrophic denitrification using the solid carbon source. Sci China Ser B Chem 52(2):236–240

    Article  CAS  Google Scholar 

  • Wu GD, Lewis JD, Hoffmann C, Chen YY, Knight R, Bittinger K, Hwang J, Chen J, Berkowsky R, Nessel L, Li HZ, Bushman FD (2010) Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiol 10:206

    Article  Google Scholar 

  • Zhao X, Meng XL, Wang JL (2009) Biological denitrification of drinking water using biodegradable polymer. Int J Environ Pollut 38(3):328–338

    Article  CAS  Google Scholar 

  • Zhou HH, Zhao X, Wang JL (2009) Nitrate removal from groundwater using biodegradable polymers as carbon source and biofilm support. Int J Environ Pollut 38:339–348

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (grant no. 50978001) and the National S&T Major Project (grant no. 2008ZX07102-003) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlong Wang.

Additional information

Responsible editor: Vinod Kumar Gupta

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Yang, L. & Wang, J. Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor. Environ Sci Pollut Res 20, 333–339 (2013). https://doi.org/10.1007/s11356-012-0926-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0926-9

Keywords

Navigation