Skip to main content
Log in

Particle Acceleration in the Heliosphere: Implications for Astrophysics

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

There has been a remarkable discovery concerning particles that are accelerated in the solar wind. At low energies, in the region where the particles are being accelerated, the spectrum of the accelerated particles is always the same: when expressed as a distribution function, the spectrum is a power law in particle speed with a spectral index of −5, and a rollover at higher particle speeds that can often be described as exponential. This common spectral shape cannot be accounted for by any conventional acceleration mechanism, such as diffusive shock acceleration or traditional stochastic acceleration. It has thus been necessary to invent a new acceleration mechanism to account for these observations, a pump mechanism in which particles are pumped up in energy through a series of adiabatic compressions and expansions. The conditions under which the pump acceleration is the dominant acceleration mechanism are quite general and are likely to occur in other astrophysical plasmas. In this paper, the most compelling observations of the −5 spectra are reviewed; the governing equation of the pump acceleration mechanism is derived in detail; the pump acceleration mechanism is applied to acceleration at shocks; and, as an illustration of the potential applicability of the pump acceleration mechanism to other astrophysical plasmas, the pump mechanism is applied to the acceleration of galactic cosmic rays in the interstellar medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves, in 15th International Cosmic Ray Conference, vol. 11 (B’Igorska Academiia na Naukite, Sofia, 1977), pp. 132–137

    Google Scholar 

  • A.R. Bell, The acceleration of cosmic rays in shock fronts—I. Mon. Not. R. Astron. Soc. 182, 147–156 (1978)

    ADS  Google Scholar 

  • R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. Astrophys. J. 221, L29–L32 (1978)

    Article  ADS  Google Scholar 

  • Y. Butt, Beyond the myth of the supernovae-remnant origin of cosmic rays. Nature 460, 701–704 (2009)

    Article  ADS  Google Scholar 

  • A.M. Bykov, I.N. Toptygin, Particle kinetics in highly turbulent plasmas (renormalized and self-consistent methods). Phys. Usp. 36(11), 1020–1052 (1993)

    Article  ADS  Google Scholar 

  • Y.-H. Chu, Bubbles and superbubbles: Observations and theory, in Massive Stars as Cosmic Engines, ed. by F. Bresolin, P.A. Crowler, J. Puls. Proc. IAU Sym, vol. 250 (Cambridge University Press, Cambridge, 2007), pp. 341–354

    Google Scholar 

  • J.W. Cronin, T.K. Gaisser, S.P. Swordy, Cosmic rays at the energy frontier. Sci. Am. 276, 32–37 (1997)

    Article  ADS  Google Scholar 

  • A.C. Cummings, E.C. Stone, F.B. McDonald, B.C. Heikkila, N. Lal, W.R. Webber, Anomalous cosmic rays in the heliosheath, in Particle Acceleration and Transport in the Heliosphere and Beyond. AIP Conf. Proc., vol. 1039 (AIP, Melville, 2008), pp. 343–348

    Google Scholar 

  • R.B. Decker, E.C. Roelof, S.M. Krimigis, M.E. Hill, Low-energy ions near the termination shock, in Physics of the Inner Heliosheath. AIP Conference Proceedings, vol. 858 (AIP, Melville, 2006), pp. 73–78

    Google Scholar 

  • M.J. Desai, G. Mason, M. Wiedenbeck, C. Cohen, J. Mazur, J. Dwyer, R.E. Gold, S.M. Krimigis, Q. Hu, C. Smith, R. Skoug, Spectral properties of heavy ions associated with the passage of interplanetary shocks at 1 AU. Astrophys. J. 611, 1156–1174 (2004)

    Article  ADS  Google Scholar 

  • L.O’C. Drury, An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys. 46, 973–1027 (1983)

    Article  ADS  Google Scholar 

  • L.A. Fisk, Increases in the low-energy cosmic ray intensity at the front of propagating interplanetary shock waves. J. Geophys. Res. 76, 1662–1672 (1971)

    Article  ADS  Google Scholar 

  • L.A. Fisk, The acceleration of energetic particles in the interplanetary medium by transit time damping. J. Geophys. Res. 81, 4633–4640 (1976)

    Article  ADS  Google Scholar 

  • L.A. Fisk, G. Gloeckler, The common spectral shape of accelerated ions in the quiet-time solar wind. Astrophys. J. 640, L79–L82 (2006)

    Article  ADS  Google Scholar 

  • L.A. Fisk, G. Gloeckler, Thermodynamic constraints on stochastic acceleration in compressional turbulence. Proc. Natl. Acad. Sci. USA 104, 5749–5754 (2007)

    Article  ADS  Google Scholar 

  • L.A. Fisk, G. Gloeckler, Acceleration of suprathermal tails in the solar wind. Astrophys. J. 686, 1466–1473 (2008)

    Article  ADS  Google Scholar 

  • L.A. Fisk, G. Gloeckler, The acceleration of anomalous cosmic rays by stochastic acceleration in the heliosheath. Adv. Space Res. 43, 1471–1478 (2009)

    Article  ADS  Google Scholar 

  • L.A. Fisk, G. Gloeckler, Energetic particle acceleration in the heliosphere, in Proc. 10th Annual International Astrophysics Conference (2012a in press)

  • L.A. Fisk, G. Gloeckler, Acceleration of galactic cosmic rays in the interstellar medium. Astrophys. J. 744(2), 127 (2012b)

    Article  ADS  Google Scholar 

  • L.A. Fisk, G. Gloeckler, N.A. Schwadron, On theories for stochastic acceleration in the solar wind. Astrophys. J. 720, 533–540 (2010)

    Article  ADS  Google Scholar 

  • G. Gloeckler, L.A. Fisk, Anisotropic beams upstream of the termination shock of the solar wind. Astrophys. J. Lett. 648, L63–L66 (2006)

    Article  ADS  Google Scholar 

  • G. Gloeckler, L.A. Fisk, Proton velocity distributions in the inner heliosheath derived from energetic hydrogen atoms measured with Cassini and IBEX, in Pickup Ions Throughout the Heliosphere and Beyond: Proceedings of the 9th Annual International Astrophysics Conference, vol. 1302 (AIP, Melville, 2010), pp. 110–116

    Google Scholar 

  • G. Gloeckler, L.A. Fisk, Acceleration of energetic particles at shocks. Astrophysical J. (2012 submitted)

  • G. Gloeckler, J.R. Jokipii, Solar modulation and the energy density of galactic cosmic rays. Astrophys. J. 148, L41 (1967)

    Article  ADS  Google Scholar 

  • G. Gloeckler, L.A. Fisk, G.M. Mason, M.E. Hill, Formation of power law tail with spectral index −5 inside and beyond the heliosphere, in Particle Acceleration and Transport in the Heliosheath and Beyond. AIP Conference Proceedings, vol. 1039 (AIP, Melville, 2008), pp. 367–374

    Google Scholar 

  • G. Gloeckler, L.A. Fisk, G.M. Mason, E.C. Roelof, E.C. Stone, Analysis of suprathermal tails using ACE/SWICS hourly-averaged proton velocity distributions, in Proc. 10th Annual International Astrophysics Conference (2012 in press)

  • J.R. Jokipii, M.A. Lee, Compression acceleration in astrophysical plasmas and the production of f(v) proportion to v −5 spectra. Astrophys. J. 713, 475 (2010)

    Article  ADS  Google Scholar 

  • G.F. Krymsky, A regular mechanism for the acceleration of charged particles on the front of a shock wave. Dokl. Akad. Nauk SSSR 234, 1306–1308 (1977)

    ADS  Google Scholar 

  • P.O. Lagage, C.J. Cesarsky, The maximum energy of cosmic rays accelerated in supernova shocks. Astron. Astrophys. 125(2), 249–257 (1983)

    ADS  MATH  Google Scholar 

  • R.A. Mewaldt, N.E. Yanasak, M.E. Wiedenbeck, A.J. Davis, W.R. Binns, E.R. Christian, A.C. Cummings, P.L. Hink, R.A. Leske, S.M. Niebur, E.C. Stone, T.T. von Rosenvinge, Radioactive clocks and cosmic ray transport in the galaxy. Space Sci. Rev. 99, 27–39 (2001)

    Article  ADS  Google Scholar 

  • A.H. Minter, Why would we see 2-D turbulence in interstellar gases. Bull. Am. Astron. Soc. 31, 1449 (1999)

    ADS  Google Scholar 

  • A.H. Minter, S.R. Sprangler, Observations of turbulent fluctuations in the interstellar plasma density and magnetic field on spatial scales of 0.01 to 100 parsecs. Astrophys. J. 458, 194 (1996)

    Article  ADS  Google Scholar 

  • N.A. Schwadron, M.A. Dayeh, M. Desai, H. Fahr, J.R. Jokipii, M.A. Lee, Superposition of stochastic processes and the resulting particle distributions. Astrophys. J. 713, 1386–1392 (2010)

    Article  ADS  Google Scholar 

  • S.P. Swordy, The energy spectra and anisotropies of cosmic rays. Space Sci. Rev. 99, 85–94 (2001)

    Article  ADS  Google Scholar 

  • P. Van Nes, R. Reinhard, T.R. Sanderson, K.-P. Wenzel, R.D. Zwicki, The energy spectrum of 35- to 1600 keV protons associated with interplanetary shocks. J. Geophys. Res. 89, 2122–2132 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NASA Grant NNX10AF23G and by NSF Grant AGS-1043012. This paper benefited substantially from discussions held at the meetings of the International Team on −5 Tails and ACRs of the International Space Science Institute in Bern, Switzerland. We are also grateful to Glenn Mason for providing access to ACE/ULEIS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Fisk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisk, L.A., Gloeckler, G. Particle Acceleration in the Heliosphere: Implications for Astrophysics. Space Sci Rev 173, 433–458 (2012). https://doi.org/10.1007/s11214-012-9899-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9899-8

Keywords

Navigation