Skip to main content
Log in

Coronal Sources and In Situ Properties of the Solar Winds Sampled by ACE During 1999 – 2008

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We identify the coronal sources of the solar winds sampled by the ACE spacecraft during 1999 – 2008 and examine the in situ solar wind properties as a function of wind sources. The standard two-step mapping technique is adopted to establish the photospheric footpoints of the magnetic flux tubes along which the ACE winds flow. The footpoints are then placed in the context of EIT 284 Å images and photospheric magnetograms, allowing us to categorize the sources into four groups: coronal holes (CHs), active regions (ARs), the quiet Sun (QS), and “undefined”. This practice also enables us to establish the response to solar activity of the fractions occupied by each type of solar wind, and of their speeds and O7+/O6+ ratios measured in situ. We find that during the maximum phase, the majority of ACE winds originate from ARs. During the declining phase, CHs and ARs are equally important contributors to the ACE solar winds. The QS contribution increases with decreasing solar activity and maximizes in the minimum phase when the QS appears to be the primary supplier of the ACE winds. With decreasing activity, the winds from all sources tend to become cooler, as represented by the increasingly low O7+/O6+ ratios. On the other hand, during each activity phase, the AR winds tend to be the slowest and are associated with the highest O7+/O6+ ratios, while the CH winds correspond to the other extreme, with the QS winds lying in between. Applying the same analysis method to the slow winds alone, here defined as the winds with speeds lower than 500 km s−1, we find basically the same overall behavior, as far as the contributions of individual groups of sources are concerned. This statistical study indicates that QS regions are an important source of the solar wind during the minimum phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. http://solarmonitor.org .

References

  • Abbo, L., Antonucci, E., Mikić, Z., Linker, J.A., Riley, P., Lionello, R.: 2010, Characterization of the slow wind in the outer corona. Adv. Space Res. 46, 1400. DOI . ADS .

    Article  ADS  Google Scholar 

  • Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9, 131. DOI . ADS .

    Article  ADS  Google Scholar 

  • Antiochos, S.K., Linker, J.A., Lionello, R., Mikić, Z., Titov, V., Zurbuchen, T.H.: 2012, The structure and dynamics of the corona–heliosphere connection. Space Sci. Rev. 172, 169. DOI . ADS .

    Article  ADS  Google Scholar 

  • Brooks, D.H., Ugarte-Urra, I., Warren, H.P.: 2015, Full-Sun observations for identifying the source of the slow solar wind. Nat. Commun. 6, 5947. DOI . ADS .

    Article  ADS  Google Scholar 

  • Büergi, A., Geiss, J.: 1986, Helium and minor ions in the corona and solar wind – dynamics and charge states. Solar Phys. 103, 347. DOI . ADS .

    Article  ADS  Google Scholar 

  • Culhane, J.L., Brooks, D.H., van Driel-Gesztelyi, L., Démoulin, P., Baker, D., DeRosa, M.L., Mandrini, C.H., Zhao, L., Zurbuchen, T.H.: 2014, Tracking solar active region outflow plasma from its source to the near-Earth environment. Solar Phys. 289, 3799. DOI . ADS .

    Article  ADS  Google Scholar 

  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291. DOI . ADS .

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Esser, R., Edgar, R.J.: 2000, Reconciling spectroscopic electron temperature measurements in the solar corona with in situ charge state observations. Astrophys. J. Lett. 532, L71. DOI . ADS .

    Article  ADS  Google Scholar 

  • Feldman, U., Landi, E., Schwadron, N.A.: 2005, On the sources of fast and slow solar wind. J. Geophys. Res. 110, 7109. DOI . ADS .

    Article  Google Scholar 

  • Fu, H., Xia, L., Li, B., Huang, Z., Jiao, F., Mou, C.: 2014, Measurements of outflow velocities in on-disk plumes from EIS/Hinode observations. Astrophys. J. 794, 109. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gloeckler, G., Cain, J., Ipavich, F.M., Tums, E.O., Bedini, P., Fisk, L.A., Zurbuchen, T.H., Bochsler, P., Fischer, J., Wimmer-Schweingruber, R.F., Geiss, J., Kallenbach, R.: 1998, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev. 86, 497. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21. DOI . ADS .

    Article  ADS  Google Scholar 

  • Habbal, S.R., Esser, R., Arndt, M.B.: 1993, How reliable are coronal hole temperatures deduced from observations? Astrophys. J. 413, 435. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harra, L.K., Sakao, T., Mandrini, C.H., Hara, H., Imada, S., Young, P.R., van Driel-Gesztelyi, L., Baker, D.: 2008, Outflows at the edges of active regions: contribution to solar wind formation? Astrophys. J. Lett. 676, L147. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hassler, D.M., Dammasch, I.E., Lemaire, P., Brekke, P., Curdt, W., Mason, H.E., Vial, J.-C., Wilhelm, K.: 1999, Solar wind outflow and the chromospheric magnetic network. Science 283, 810. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hefti, S., Grünwaldt, H., Bochsler, P., Aellig, M.R.: 2000, Oxygen freeze-in temperatures measured with SOHO/CELIAS/CTOF. J. Geophys. Res. 105, 10527. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ko, Y.-K., Raymond, J.C., Zurbuchen, T.H., Riley, P., Raines, J.M., Strachan, L.: 2006, Abundance variation at the vicinity of an active region and the coronal origin of the slow solar wind. Astrophys. J. 646, 1275. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ko, Y.-K., Muglach, K., Wang, Y.-M., Young, P.R., Lepri, S.T.: 2014, Temporal evolution of solar wind ion composition and their source coronal holes during the declining phase of cycle 23. I. Low-latitude extension of polar coronal holes. Astrophys. J. 787, 121. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kojima, M., Fujiki, K., Ohmi, T., Tokumaru, M., Yokobe, A., Hakamada, K.: 1999, Low-speed solar wind from the vicinity of solar active regions. J. Geophys. Res. 104, 16993. DOI . ADS .

    Article  ADS  Google Scholar 

  • Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505. DOI . ADS .

    Article  ADS  Google Scholar 

  • Krista, L.D., Gallagher, P.T.: 2009, Automated coronal hole detection using local intensity thresholding techniques. Solar Phys. 256, 87. DOI . ADS .

    Article  ADS  Google Scholar 

  • Landi, E., Alexander, R.L., Gruesbeck, J.R., Gilbert, J.A., Lepri, S.T., Manchester, W.B., Zurbuchen, T.H.: 2012a, Carbon ionization stages as a diagnostic of the solar wind. Astrophys. J. 744, 100. DOI . ADS .

    Article  ADS  Google Scholar 

  • Landi, E., Gruesbeck, J.R., Lepri, S.T., Zurbuchen, T.H.: 2012b, New solar wind diagnostic using both in situ and spectroscopic measurements. Astrophys. J. 750, 159. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepri, S.T., Landi, E., Zurbuchen, T.H.: 2013, Solar wind heavy ions over solar cycle 23: ACE/SWICS measurements. Astrophys. J. 768, 94. DOI . ADS .

    Article  ADS  Google Scholar 

  • Levine, R.H.: 1982, Open magnetic fields and the solar cycle. I – Photospheric sources of open magnetic flux. Solar Phys. 79, 203. DOI . ADS .

    Article  ADS  Google Scholar 

  • Li, B., Habbal, S.R., Li, X., Mountford, C.: 2005, Effect of the latitudinal distribution of temperature at the coronal base on the interplanetary magnetic field configuration and the solar wind flow. J. Geophys. Res. 110, 12112. DOI . ADS .

    Article  Google Scholar 

  • Liewer, P.C., Neugebauer, M., Zurbuchen, T.: 2004, Characteristics of active-region sources of solar wind near solar maximum. Solar Phys. 223, 209. DOI . ADS .

    Article  ADS  Google Scholar 

  • Luhmann, J.G., Li, Y., Arge, C.N., Gazis, P.R., Ulrich, R.: 2002, Solar cycle changes in coronal holes and space weather cycles. J. Geophys. Res. 107, 1154. DOI . ADS .

    Article  Google Scholar 

  • Madjarska, M.S., Huang, Z., Doyle, J.G., Subramanian, S.: 2012, Coronal hole boundaries evolution at small scales. III. EIS and SUMER views. Astron. Astrophys. 545, A67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Nuevo, F.A., Vásquez, A.M., Démoulin, P., van Driel-Gesztelyi, L., Baker, D., Culhane, J.L., Cristiani, G.D., Pick, M.: 2014, How can active region plasma escape into the solar wind from below a closed helmet streamer? Solar Phys. 289, 4151. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marsch, E.: 2006, Kinetic physics of the solar corona and solar wind. Living Rev. Solar Phys. 3, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mazzotta, P., Mazzitelli, G., Colafrancesco, S., Vittorio, N.: 1998, Ionization balance for optically thin plasmas: rate coefficients for all atoms and ions of the elements H to Ni. Astron. Astrophys. Suppl. 133, 403. DOI . ADS .

    Article  ADS  Google Scholar 

  • McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev. 86, 563. DOI . ADS .

    Article  ADS  Google Scholar 

  • Neugebauer, M., Forsyth, R.J., Galvin, A.B., Harvey, K.L., Hoeksema, J.T., Lazarus, A.J., Lepping, R.P., Linker, J.A., Mikic, Z., Steinberg, J.T., von Steiger, R., Wang, Y.-M., Wimmer-Schweingruber, R.F.: 1998, Spatial structure of the solar wind and comparisons with solar data and models. J. Geophys. Res. 103, 14587. DOI . ADS .

    Article  ADS  Google Scholar 

  • Neugebauer, M., Liewer, P.C., Smith, E.J., Skoug, R.M., Zurbuchen, T.H.: 2002, Sources of the solar wind at solar activity maximum. J. Geophys. Res. 107, 1488. DOI . ADS .

    Article  Google Scholar 

  • Noci, G., Kohl, J.L., Antonucci, E., Tondello, G., Huber, M.C.E., Fineschi, S., Gardner, L.D., Korendyke, C.M., Nicolosi, P., Romoli, M., Spadaro, D., Maccari, L., Raymond, J.C., Siegmund, O.H.W., Benna, C., Ciaravella, A., Giordano, S., Michels, J., Modigliani, A., Naletto, G., Panasyuk, A., Pernechele, C., Poletto, G., Smith, P.L., Strachan, L.: 1997, The quiescent corona and slow solar wind. In: Wilson, A. (ed.) Fifth SOHO Workshop: The Corona and Solar Wind Near Minimum Activity, ESA SP-404, 75. ADS .

    Google Scholar 

  • Nolte, J.T., Roelof, E.C.: 1973, Large-scale structure of the interplanetary medium, I: High coronal source longitude of the quiet-time solar wind. Solar Phys. 33, 241. DOI . ADS .

    Article  ADS  Google Scholar 

  • Owocki, S.P., Holzer, T.E., Hundhausen, A.J.: 1983, The solar wind ionization state as a coronal temperature diagnostic. Astrophys. J. 275, 354. DOI . ADS .

    Article  ADS  Google Scholar 

  • Poletto, G.: 2013, Sources of solar wind over the solar activity cycle. J. Adv. Res. 4, 215. DOI . ADS .

    Article  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2004, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res. 109, 9104. DOI . ADS .

    Article  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z., Lionello, R., Ledvina, S.A., Luhmann, J.G.: 2006, A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 653, 1510. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sakao, T., Kano, R., Narukage, N., Kotoku, J., Bando, T., DeLuca, E.E., Lundquist, L.L., Tsuneta, S., Harra, L.K., Katsukawa, Y., Kubo, M., Hara, H., Matsuzaki, K., Shimojo, M., Bookbinder, J.A., Golub, L., Korreck, K.E., Su, Y., Shibasaki, K., Shimizu, T., Nakatani, I.: 2007, Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science 318, 1585. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schwenn, R.: 2006, Solar wind sources and their variations over the solar cycle. Space Sci. Rev. 124, 51. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sheeley, N.R., Wang, Y.-M., Hawley, S.H., Brueckner, G.E., Dere, K.P., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Paswaters, S.E., Socker, D.G., St. Cyr, O.C., Wang, D., Lamy, P.L., Llebaria, A., Schwenn, R., Simnett, G.M., Plunkett, S., Biesecker, D.A.: 1997, Measurements of flow speeds in the corona between 2 and 30 R. Astrophys. J. 484, 472. ADS .

    Article  ADS  Google Scholar 

  • Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev. 86, 613. DOI . ADS .

    Article  ADS  Google Scholar 

  • Snyder, C.W., Neugebauer, M.: 1966, The relation of Mariner-2 plasma data to solar phenomena. In: Mackin, R.J. Jr., Neugebauer, M. (eds.) The Solar Wind, 25. ADS .

    Google Scholar 

  • Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The advanced composition explorer. Space Sci. Rev. 86, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Subramanian, S., Madjarska, M.S., Doyle, J.G.: 2010, Coronal hole boundaries evolution at small scales. II. XRT view. Can small-scale outflows at CHBs be a source of the slow solar wind. Astron. Astrophys. 516, A50. DOI . ADS .

    Article  ADS  Google Scholar 

  • Suess, S.T., Wang, A.-H., Wu, S.T., Nerney, S.F.: 1999, Streamer evaporation. Space Sci. Rev. 87, 323. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tu, C.-Y., Zhou, C., Marsch, E., Xia, L.-D., Zhao, L., Wang, J.-X., Wilhelm, K.: 2005, Solar wind origin in coronal funnels. Science 308, 519. DOI . ADS .

    Article  ADS  Google Scholar 

  • van Driel-Gesztelyi, L., Culhane, J.L., Baker, D., Démoulin, P., Mandrini, C.H., DeRosa, M.L., Rouillard, A.P., Opitz, A., Stenborg, G., Vourlidas, A., Brooks, D.H.: 2012, Magnetic topology of active regions and coronal holes: implications for coronal outflows and the solar wind. Solar Phys. 281, 237. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 2003, The solar wind and its magnetic sources at sunspot maximum. Astrophys. J. 587, 818. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Ko, Y.-K., Grappin, R.: 2009, Slow solar wind from open regions with strong low-coronal heating. Astrophys. J. 691, 760. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr., Walters, J.H., Brueckner, G.E., Howard, R.A., Michels, D.J., Lamy, P.L., Schwenn, R., Simnett, G.M.: 1998, Origin of streamer material in the outer corona. Astrophys. J. Lett. 498, L165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Xia, L.D., Marsch, E., Curdt, W.: 2003, On the outflow in an equatorial coronal hole. Astron. Astrophys. 399, L5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhao, L., Landi, E.: 2014, Polar and equatorial coronal hole winds at solar minima: from the heliosphere to the inner corona. Astrophys. J. 781, 110. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhao, L., Zurbuchen, T.H., Fisk, L.A.: 2009, Global distribution of the solar wind during solar cycle 23: ACE observations. Geophys. Res. Lett. 36, 14104. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Aboudarham, J., Zharkov, S., Ipson, S.S., Benkhalil, A.K., Fuller, N.: 2005, Solar feature catalogues in EGSO. Solar Phys. 228, 361. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zirker, J.B.: 1977, Coronal holes and high-speed wind streams. Rev. Geophys. Space Phys. 15, 257. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zurbuchen, T.H.: 2001, Heliospheric magnetic field configuration and its coronal sources. In: Brekke, P., Fleck, B., Gurman, J.B. (eds.) Recent Insights into the Physics of the Sun and Heliosphere: Highlights from SOHO and Other Space Missions, IAU Symposium 203, 585. ADS .

    Google Scholar 

  • Zurbuchen, T.H., Hefti, S., Fisk, L.A., Gloeckler, G., Schwadron, N.A.: 2000, Magnetic structure of the slow solar wind: constraints from composition data. J. Geophys. Res. 105, 18327. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for helpful comments. We thank the ACE SWICS, SWEPAM, and MAG instrument teams and the ACE Science Center for providing the ACE data. SOHO is a project of international cooperation between ESA and NASA. Wilcox Solar Observatory data used in this study were obtained via the web site http://wso.stanford.edu courtesy of J.T. Hoeksema. The Wilcox Solar Observatory is currently supported by NASA. This research is supported by the China 973 program 2012CB825601, the National Natural Science Foundation of China (41174154, 41274176, and 41274178), and the Ministry of Education of China (20110131110058 and NCET-11-0305). BL is also grateful to the International Space Science Institute (ISSI) for providing the financial support to the international team on the origins of the slow solar wind.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidong Xia.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MOV 119.4 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Li, B., Li, X. et al. Coronal Sources and In Situ Properties of the Solar Winds Sampled by ACE During 1999 – 2008. Sol Phys 290, 1399–1415 (2015). https://doi.org/10.1007/s11207-015-0689-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0689-9

Keywords

Navigation