Skip to main content

Advertisement

Log in

Development of field mobile soil nitrate sensor technology to facilitate precision fertilizer management

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Precision nitrogen (N) fertilizer management has the potential to improve N fertilizer use efficiency, simultaneously reducing the cost of inputs for farmers and the off-site environmental impact of crop production. Although technology is available to spatially vary sidedress N fertilizer application rates within fields, sensor technology capable of measuring soil nitrate (NO3) levels in-real-time and on-the-go with sufficient accuracy to facilitate precision application of N fertilizers is lacking. The potential of Diamond-Attenuated Total internal Reflectance (D-ATR) Fourier Transform Infrared (FTIR) spectroscopy was evaluated as a soil NO3 sensor. Two independent datasets were tested; (1) the field dataset consisted of 124 GPS registered soil samples collected from four agricultural fields; and (2) the laboratory dataset consisted of five different soils spiked with various amounts of KNO3 (135 samples) and incubated in the laboratory. Spectra were collected using an Agilent 4100 Exoscan FTIR spectrometer equipped with a D-ATR cell and analyzed using partial least squares regression. Calibration R2 values (D-ATR-FTIR predicted versus independently measured soil NO3 concentrations) for the field and laboratory datasets were 0.83 and 0.90 (RMSE = 8.3 and 8.8 mg kg−1), respectively; and robust “leave one field/soil out” cross validation tests yielded R2 values for the field and laboratory datasets of 0.65 and 0.83 (RMSE = 12.5 and 13.3 mg kg−1), respectively. The study demonstrates the potential of using D-ATR-FTIR spectroscopy for rapid field-mobile determination of soil NO3 concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamchuk, V. I., Hummel, J. W., Morgan, M. T., & Upadhyaya, S. K. (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44, 71–91.

    Article  Google Scholar 

  • Adamchuk, V., Lund, E., Dobermann, A., & Morgan, M. T. (2003). On-the-go mapping of soil properties using ion-selective electrodes. In J. Stafford & A. Werner (Eds.), Precision agriculture. Proceedings of the 3rd European conference on precision agriculture (pp. 27–33). Wageningen, The Netherlands: Wageningen Academic Publishers.

  • Adsett, J. F., Thottan, J. A., & Sibley, K. J. (1999). Development of an automated on-the-go soil nitrate monitoring system. Applied Engineering in Agriculture, 15, 351–356.

    Article  Google Scholar 

  • Bendre, M. R., Thool, R. C., &Thool, V. R. (2015). Big data in precision agriculture: weather forecasting for future farming. In 1st international conference on next generation computing technologies (NGCT) (pp. 744–750). IEEE Xplore, https://doi.org/10.1109/ngct.2015.7375220.

  • Binder, D. L., Sander, D. H., & Walters, D. T. (2000). Maize response to time of nitrogen application as affected by level of nitrogen deficiency. Agronomy Journal, 92, 1228–1236.

    Article  CAS  Google Scholar 

  • Binford, G. D., Blackmer, A. M., & Cerrato, M. E. (1992). Relationship between corn yields and soil nitrate in late spring. Agronomy Journal, 84, 53–59.

    Article  Google Scholar 

  • Blackmer, A. M., Pottker, D., Cerrato, M. E., & Webb, J. (1989). Correlation between soil nitrate concentrations in late spring and corn yields in Iowa. Journal of Production Agriculture, 2, 103–109.

    Article  Google Scholar 

  • Blackmer, A. M., Voss, R. D., & Mallarino, A. P. (1997). Nitrogen fertilizer recommendations for corn in Iowa. Ames, IA: Iowa State University extension publ. Retrieved May 5, 2018, from https://www.extension.iastate.edu/waterquality/files/page/files/Nitrogen%20Fertilizer%20Recommendations%20for%20Corn%20in%20Iowa.pdf.

  • Borenstein, A., Linker, R., Shmulevich, I., & Shaviv, A. (2006). Determination of soil nitrate and water content using attenuated total reflectance spectroscopy. Applied Spectroscopy, 60, 1267–1272.

    Article  CAS  PubMed  Google Scholar 

  • Chang, C. W., Laird, D. A., Mausbach, M. J., & Hurburgh, C. J. (2001). Near infrared reflectance spectroscopy-principal component regression analyses of soil properties. Soil Science Society of America Journal, 65, 480–490.

    Article  CAS  Google Scholar 

  • Environmental Protection Agency. (2011). Reactive nitrogen in the United States: An analysis of inputs, flows, consequences, and management options, EPA Science Advisory Board, U.S. Environmental Protection Agency, EPA-SAB-11-013, Washington, DC.

  • Fahsi, A., Tsegaye, T., Boggs, J., Tadesse, W., & Coleman, T. L. (1998). Precision agriculture with hyperspectral remotely-sensed data, GIS, and GPS technology: a step toward an environmentally responsible farming. In E. T. Engman (Ed.), Remote sensing for agriculture, ecosystems, and hydrology (pp. 270–276). Barcilona, Spain: EurOpt Series.

    Chapter  Google Scholar 

  • Griffiths, P. R., & De Haseth, J. A. (2007). Fourier transform infrared spectroscopy, second edition (Chapter 15). Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Jaynes, D. B., Dinnes, D. L., Meek, D. W., Karlen, D. L., Cambardella, C. A., & Colvin, T. S. (2004). Using the late spring nitrate test to reduce nitrate loss within a watershed. Journal of Environmental Quality, 33, 669–677.

    Article  CAS  PubMed  Google Scholar 

  • Khoshhesab Z. M. (2012). Reflectance IR spectroscopy. In T. Theophanides (Ed.). Infrared spectroscopymaterials science, engineering and technology, (Ch. 11). INTECH: https://doi.org/10.5772/2055. Retrieved May 6, 2018, from https://www.intechopen.com/books/infrared-spectroscopy-materials-science-engineering-and-technology.

  • Kim, H. J., Hummel, J. W., Sudduth, K. A., & Motavalli, P. P. (2007). Simultaneous analysis of soil macronutrients using ion-selective electrodes. Soil Science Society of America Journal, 71, 1867–1877.

    Article  CAS  Google Scholar 

  • Laird, D., Rogovska, N., & Chiou, C. P. (2016). Soil nitrate sensing system for precision management of nitrogen fertilizer application. US Patent, 62(263), 788.

    Google Scholar 

  • Linker, R., Kenny, A., Shaviv, A., Singher, L., & Shmulevich, I. (2004). Fourier transform infrared-attenuated total reflection nitrate determination of soil pastes using principal component regression, partial least squares, and cross-correlation. Applied Spectroscopy, 58, 516–520.

    Article  CAS  PubMed  Google Scholar 

  • Linker, R., Shmulevich, I., Kenny, A., & Shaviv, A. (2005). Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy. Chemosphere, 61, 652–658.

    Article  CAS  PubMed  Google Scholar 

  • Lobsey, C. R., Viscarra Rossel, R. A., & McBratney, A. B. (2010). Proximal soil nutrient sensing using electrochemical sensors. In R. A. Rossel et al. (Eds.), Proximal soil sensing (pp. 77–88). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Ma, B. L., & Biswas, D. K. (2015). Precision nitrogen management for sustainable corn production. In E. Lichtfouse & A. Goyal (Eds.), Sustainable agriculture reviews (pp. 33–62). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Magdoff, F. (1991). Understanding the Magdoff pre-sidedress nitrate test for corn. Journal of Production Agriculture, 4, 297–305.

    Article  Google Scholar 

  • Melkonian, J. J., van Es, H. M., DeGaetano, A. T., & Joesph, L. (2008). ADAPT-N: Adaptive nitrogen management for maize using high-resolution climate data and model simulations. In R. Khosla (Ed.), ADAPT-N: Adaptive nitrogen management for maize using high-resolution climate data and model simulations. Proceedings of the 9th international conference on precision agriculture. Monticello, IL, USA: International Society of Precision Agriculture. Retrieved May 6, 2018 from https://cpb-us-e1.wpmucdn.com/blogs.cornell.edu/dist/8/6785/files/2016/06/Prec-Ag-Conf-2008-Melkonian-van-Es-uhaslu.pdf.

  • Pioneer. (2018). Staging corn growth. Retrieved May 5, 2018, from https://www.pioneer.com/home/site/us/agronomy/library/staging-corn-growth/#defined.

  • Agilent 4100 ExoScan FTIR Operation Manual. Retrieved May 6, 2018, from https://www.agilent.com/cs/library/usermanuals/public/0023-401.pdf.

  • Rorie, R. L., Purcell, L. C., Mozaffari, M., Karcher, D. E., King, C. A., Marsh, M. C., et al. (2011). Association of “greenness” in corn with yield and leaf nitrogen concentration. Agronomy Journal, 103, 529–535.

    Article  Google Scholar 

  • Rossel, R. A. V., Adamchuk, V. I., Sudduth, K. A., McKenzie, N. J., & Lobsey, C. (2011). Proximal soil sensing: An effective approach for soil measurements in space and time. In D. L. Sparks (Ed.), Advances in agronomy (Vol. 113, pp. 237–282). San Diego, CA, USA: Elsevier.

    Google Scholar 

  • Scharf, P. C., & Lory, J. A. (2002). Calibrating corn color from aerial photographs to predict sidedress nitrogen need. Agronomy Journal, 94, 397–404.

    Article  Google Scholar 

  • Scharf, P. C., Shannon, D. K., Palm, H. L., Sudduth, K. A., Drummond, S. T., Kitchen, N. R., et al. (2011). Sensor-based nitrogen applications out performed producer-chosen rates for corn in on-farm demonstrations. Agronomy Journal, 103, 1683–1691.

    Article  Google Scholar 

  • Schnetger, B., & Lehners, C. (2014). Determination of nitrate plus nitrite in small volume marine water samples using vanadium(III)chloride as a reduction agent. Marine Chemistry, 160, 91–98.

    Article  CAS  Google Scholar 

  • Sela, S., van Es, H. M., Moebius-Clune, B. N., Marjerison, R., Melkonian, J., Moebius-Clune, D., et al. (2016). Adapt-N outperforms grower-selected nitrogen rates in northeast and midwestern United States strip trials. Agronomy Journal, 108, 1726–1734.

    Article  CAS  Google Scholar 

  • Sethuramasamyraja, B., Adamchuk, V. I., Dobermann, A., Marx, D. B., Jones, D. D., & Meyer, G. E. (2008). Agitated soil measurement method for integrated on-the-go mapping of soil pH, potassium and nitrate contents. Computers and Electronics in Agriculture, 60, 212–225.

    Article  Google Scholar 

  • Sibley, K. J., Astatkie, T., Brewster, G., Struik, P. C., Adsett, J. F., & Pruski, K. (2009). Field-scale validation of an automated soil nitrate extraction and measurement system. Precision Agriculture, 10, 162–174.

    Article  Google Scholar 

  • Sinfield, J. V., Fagerman, D., & Colic, O. (2010). Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils. Computers and Electronics in Agriculture, 70, 1–18.

    Article  Google Scholar 

  • Verma, P. K., Kundu, A., Puretz, M. S., Dhoonmoon, C., Chegwidden, O. S., Londergan, C. H., et al. (2017). The bend + libration combination band is an intrinsic, collective, and strongly solute-dependent reporter on the hydrogen bonding network of liquid water. Journal of Physical Chemistry B, 122, 2587–2599. https://doi.org/10.1021/acs.jpcb.7b09641.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was funded by the Iowa State University College of Agriculture and Life Sciences and by a Grant from the Leopold Center for Sustainable Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Laird.

Ethics declarations

Conflict of interest

Iowa State University Research Foundation has filed a patent application on technology described in this paper and recently several of the authors have formed a startup company, N-Sense, LLC, which is exploring commercial opportunities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogovska, N., Laird, D.A., Chiou, CP. et al. Development of field mobile soil nitrate sensor technology to facilitate precision fertilizer management. Precision Agric 20, 40–55 (2019). https://doi.org/10.1007/s11119-018-9579-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-018-9579-0

Keywords

Navigation