Skip to main content
Log in

ABA 8′-hydroxylase and its chemical inhibitors

  • Original Paper
  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) regulates many important processes in normal growth and development as well as in adaptive responses to environmental stresses. For correct and accurate actions, physiologically active ABA level is controlled through fine-tuning of de novo biosynthesis and catabolism. Hydroxylation at the 8′-position of ABA is the key step in the oxidative catabolism of ABA, and this reaction is catalyzed by ABA 8′-hydroxylase, a cytochrome P450 (P450). Recently, the CYP707A family of Arabidopsis has been identified as ABA 8′-hydroxylase through genomic and biochemical approaches. The CYP707A family is present in a wide range of plant kingdom and functions in ABA catabolism in plants. CYP707A is the pivotal enzyme controlling the endogenous ABA levels by its transcriptional regulation and plays a key role in ABA-mediated physiological processes such as seed dormancy and stress response. Specific inhibitors of ABA catabolism can manipulate ABA homeostasis in plants and are potentially very useful tools for cellular and molecular investigations in the field of plant physiology as well as for potential agricultural chemicals. Identification of the ABA catabolic genes gives us new insight into the development of chemical inhibitors specific to ABA 8′-hydroxylase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams SR, Rose PA, Cutler AJ, Balsevich JJ, Lei B, Walker-Simmons MK (1997) 8′-Methylene. Abscisic Acid 114:89–97

  • Addicott FT (1983) Abscisic acid. Praeger, New York

    Google Scholar 

  • Asami T, Yoshida S (1999) Brassinosteroid biosynthesis inhibitors. Trend Plant Sci 4:348–353

    Article  Google Scholar 

  • Arai S, Todoroki Y, Ibaraki S, Naoe Y, Hirai N, Ohigashi H (1999) Synthesis and biological activity of 3′-chloro, -bromo, and -iodoabscisic acids, and biological activity of 3′-fluoro-8′-hydroxyabscisic acid. Phytochemistry 52:1185–1193

    Article  CAS  Google Scholar 

  • Audenaert K, De Meyer GB, Hofte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491– 501

    Article  PubMed  CAS  Google Scholar 

  • Bajguz A, Asami T (2005) Suppression of Wolffia arrhiza growth by brassinazole, an inhibitor of brassinosteroid biosynthesis and its restoration by endogenous 24-epibrassinolide. Phytochemistry 66:1787–1796

    Article  PubMed  CAS  Google Scholar 

  • Choe SW, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22 alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10:231–243

    Article  PubMed  CAS  Google Scholar 

  • Chono M, Honda I, Nakamura S, Abe F, Kaneko S, Watanabe Y (2005) Analysis of the regulation of abscisic acid content in barley lines with the different levels of grain dormancy. Regulation of Plant Growth & Development, vol 40 Supplement 2005. The Japanese Society for Chemical Regulation of Plants, Tokyo

    Google Scholar 

  • Correia MA, Ortiz de Montellano PR (2005) Inhibition of cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 247–322

    Google Scholar 

  • Cutler AJ, Rose PA, Squires TM, Loewen MK, Shaw AC, Wilson Quail J, Krochko JE, Abrams SR (2000) Inhibitors of abscisic acid 8′-hydroxylase. Biochemistry 39:13614–13624

    Article  PubMed  CAS  Google Scholar 

  • Cutler AJ, Squires TM, Loewen MK, Balsevich JJ (1997) Induction of (+)-abscisic acid 8′-hydroxylase by (+)-abscisic acid in cultured maize cells. J Exp Bot 48:1787–1795

    Article  CAS  Google Scholar 

  • Cutler AJ, Krochko JE (1999) Formation and breakdown of ABA. Trend Plant Sci 4:472-478

    Article  Google Scholar 

  • Desiraju GR, Steiner T (1999) The weak hydrogen bond. Oxford University Press, New York

    Google Scholar 

  • Durst F, Nelson DR (1995) Diversity and evolution of plant P450 and P450-reductases. Drug Metab Drug Interact 12:189–206

    CAS  Google Scholar 

  • Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5:221–233

    Article  Google Scholar 

  • Fletcher RA, Gilley A, Sankhla N, Davis TD (2001) Triazoles as plant growth regulators and stress protectants. Hortic Rev 24:55–138

    Google Scholar 

  • Hampson CR, Reaney MJT, Abrams GD, Abrams SR, Gusta LV (1992) Metabolism of (+)-abscisic acid to (+)-7′-hydroxyabscisic acid by bromegrass cell cultures. Phytochemistry 31:2645–2648

    Article  CAS  Google Scholar 

  • Hauser C, Kwiatkowski J, Rademacher W, Grossmann K (1990) Regulation of endogenous abscisic acid levels and transpiration in oilseed rape by plant growth retardants. J plant Physiol 137:201–207

    Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA 98:2065–2070

    Article  PubMed  CAS  Google Scholar 

  • Hirai N, Yoshida R, Todoroki Y, Ohigashi H (2000) Biosynthesis of abscisic acid by the non-mevalonate pathway in plants, and by the mevalonate pathway in fungi. Biosci Biotechnol Biochem 64:1448–1458

    Article  PubMed  CAS  Google Scholar 

  • Hoth S, Morgant M, Sanchez JP, Hanafey MK, Tingey SV, Chua NH (2002) Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J Cell Sci 115:4891–4900

    Article  PubMed  CAS  Google Scholar 

  • Inomata M, Hirai N, Yoshida R, Ohigashi H (2004a) The biosynthetic pathway to abscisic acid via ionylideneethane in the fungus Botrytis cinerea. Phytochemistry 65:2667–78

    Article  PubMed  CAS  Google Scholar 

  • Inomata M, Hirai N, Yoshida R, Ohigashi H (2004b) Biosynthesis of abscisic acid by the direct pathway via ionylideneethane in a fungus, Cercospora cruenta. Biosci Biotechnol Biochem 68:2571–2580

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  PubMed  CAS  Google Scholar 

  • Jennewein S, Rithner CD, Williams RM, Croteau RB (2001) Taxol biosynthesis: taxane 13 alpha-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA 98:13595–13600

    Article  PubMed  CAS  Google Scholar 

  • Jennewein S, Rithner CD, Williams RM, Croteau RB (2003) Taxoid metabolism: Taxoid 14 alpha-hydroxylase is a cytochrome P450-dependent monooxygenase. Arch Biochem Biophys 413:262–270

    Article  PubMed  CAS  Google Scholar 

  • Kim GT, Tsukaya H, Uchimiya H (1998) The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes Dev 12:2381–2391

    PubMed  CAS  Google Scholar 

  • Kitahata N, Saito S, Miyazawa Y, Umezawa T, Shimada Y, Min YK, Mizutani M, Hirai N, Shinozaki K, Yoshida S, Asami T (2005) Chemical regulation of abscisic acid catabolism in plants by cytochrome P450 inhibitors. Bioorg Med Chem 13:4491–4498

    Article  PubMed  CAS  Google Scholar 

  • Krochko JE, Abrams GD, Loewen MK, Abrams SR, Cutler AJ (1998) (+)-Abscisic acid 8′-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol 118:849–860

    Article  PubMed  CAS  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656

    Article  PubMed  CAS  Google Scholar 

  • Lehmann H, Schwenen L (1988) Nigellic acid—an endogenous abscisic acid metabolite from Vicia faba leaves. Phytochemistry 27:677–678

    Article  CAS  Google Scholar 

  • Lim EK, Doucet CJ, Hou B, Jackson R, Abrams SR, Bowles DJ (2005) Resolution of (+)-abscisic acid using an Arabidopsis glycosyltransferase. Tetrahedron: Asymm 16:143–147

    Article  CAS  Google Scholar 

  • Loveys B, Milborrow VB (1991) Hydroxylation of methyl abscisate and the formation of three small alpha-glucosides. Phytochemistry 31:67–72

    Article  Google Scholar 

  • Milborrow BV (1986) The shapes of abscisic acid and the active site. In: Bopp M (ed) Plant growth substances 1985. Springer-Vertag, Berlin, pp 108–119

    Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Oritani T, Kiyota H (2003) Biosynthesis and metabolism of abscisic acid and related compounds. Nat Prod Rep 20:414–425

    Article  PubMed  CAS  Google Scholar 

  • Priest DM, Ambrose SJ, Vaistij FE., Elias L, Higgins GS, Ross ARS, Abrams SR, Bowles DJ (2006) Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant J 46:492–502

    Article  PubMed  CAS  Google Scholar 

  • Qin X, Zeevaart JAD (2002) Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol 128:544–551

    Article  PubMed  CAS  Google Scholar 

  • Ro DK, Arimura G, Lau SY, Piers E, Bohlmann J (2005) Loblolly pine abietadienol/abietadienal oxidase PtAO (CYP720B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase. Proc Natl Acad Sci USA 102:8060–8065

    Article  PubMed  CAS  Google Scholar 

  • Rose PA, Cutler AJ, Irvine NM, Shaw, AC, Squires TM, Loewen MK, Abrams SR (1997) 8′-Acetylene ABA: an irreversible inhibitor of ABA 8′-hydroxylase. Bioorg Med Chem Lett 7:2543–2546

    Article  CAS  Google Scholar 

  • Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta, D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-Abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Aoki M, Noutomi M, Nakaminami K, Mitsuhashi W, Nambara E, Kushiro T, Shinoda S, Kamiya Y, Inoue Y, Toyomasu T (2005) Characterization of genes encoding abscisic acid catabolic enzymes in photoblastic lettuce seeds. Regulation of Plant Growth & Development, vol 40 Supplement 2005. The Japanese Society for Chemical Regulation of Plants, Tokyo

    Google Scholar 

  • Schmalle VHW, Klaska KH, Jarchow O (1977) Die Kristall- and Molekülstruktur von (R, S)-cis, trans-Abscisinsäure: 5-(1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl)-3-methyl-2,4-pentadiensaure. Acta Cryst B33:2218–2224

    Article  Google Scholar 

  • Schoendorf A, Rithner CD, Williams RM, Croteau RB (2001) Molecular cloning of a cytochrome P450 taxane 10 beta-hydroxylase cDNA from Taxus and functional expression in yeast. Proc Natl Acad Sci USA 98:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667

    Article  PubMed  CAS  Google Scholar 

  • Schwartz SH, Qin X, Zeevaart JA (2003) Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol 131:1591–1601

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trend Plant Sci 7:41–48

    Article  CAS  Google Scholar 

  • Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S (2001) Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 26:770–779

    Article  Google Scholar 

  • Siewers V, Smedsgaard J, Tudzynski P (2004) The P450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea. Appl Environ Microbiol 70:3868–3876

    Article  PubMed  CAS  Google Scholar 

  • Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  PubMed  CAS  Google Scholar 

  • Todoroki Y, Hirai N (2000) Conformational analysis of the cyclohexenone ring in abscisic acid and its analogs with a fused cyclopropyl ring. Tetrahedron 56:8095–8100

    Article  CAS  Google Scholar 

  • Todoroki Y, Hirai H, Ohigashi H (2000) Analysis of isomerization process of 8′-hydroxyabscisic acid and its 3′-fluorinated analog in aqueous solutions. Tetrahedron 56:1649–1653

    Google Scholar 

  • Todoroki Y, Nakano S, Arai S, Hirai N, Ohigashi H (1997) Synthesis and biological activities of 8′-methylene- and 8′-methylidyneabscisic acids. Biosci Biotechnol Biochem 61:2043-2045

    Article  CAS  Google Scholar 

  • Ueda H, Tanaka J (1977) The crystal and molecular structure of dl-2-cis-4-trans-abscisic acid. Bull Chem Soc Jpn 50:1506–1509

    Article  CAS  Google Scholar 

  • Ueno K, Araki Y, Hirai N, Saito S, Mizutani M, Sakata K, Todoroki Y (2005a) Differences between the structural requirements for ABA 8′-hydroxylase inhibition and for ABA activity. Bioorg Med Chem 13:3359–3370

    Article  CAS  Google Scholar 

  • Ueno K, Saito S, Mizutani M, Sakata K, Hirai N, Todoroki Y (2005b) The functional groups of ABA required for chiral recognition by ABA 8′-hydroxylase. Regulation of Plant Growth & Development, vol 40 Supplement 2005. The Japanese Society for Chemical Regulation of Plants, Tokyo

    Google Scholar 

  • Ueno K, Yoneyama H, Saito S, Mizutani M, Sakata K, Hirai N, Todoroki Y (2005c) A lead compound for the development of ABA 8′-hydroxylase inhibitors. Bioorg Med Chem Lett 15:5226–5229

    Article  CAS  Google Scholar 

  • Umezawa T, Okamoto M, Kushiro T, Nambara E, Oono Y, Seki M, Kobayashi M, Koshiba T, Kamiya Y, Shinozaki K (2006) CYP707A3, a major ABA 8′-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J 46:171–182

    Article  PubMed  CAS  Google Scholar 

  • Wester MR, Yano JK, Schoch GA, Yang C, Griffin KJ, Stout CD, Johnson EF (2004) The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-Å resolution. J Biol Chem 279:35630–35637

    Article  PubMed  CAS  Google Scholar 

  • Willows RD, Milborrow BV (1993) Configurations and conformations of abscisic acid. Phytochemistry 34:233–237

    Article  CAS  Google Scholar 

  • Windsor ML, Zeevaart JA (1997) Induction of ABA 8′-hydroxylase by (+)-S-, ( − )-R- and 8′-8′-8′-trifluoro-S-abscisic acid in suspension cultures of potato and Arabidopsis. Phytochemistry 45:931–934

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29-36

    Article  PubMed  CAS  Google Scholar 

  • Xu ZJ, Nakajima M, Suzuki Y, Yamaguchi I (2002) Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol 129:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Zaharia LI, Gai Y, Nelson KM, Ambrose SJ, Abrams SR (2004) Oxidation of 8′-hydroxy abscisic acid in Black Mexican Sweet maize cell suspension cultures. Phytochemistry 65:3199–3209

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  CAS  Google Scholar 

  • Zeevaart JAD, Gage DA, Creelman RA (1990) Recent studies of the metabolism of abscisic acid. In: Pharis RP, Rood SB (eds) Plant growth substances 1988. Springer-Verlag, Berlin, pp 233��240

    Google Scholar 

  • Zhou R, Cutler AJ, Ambrose SJ, Galka MM, Nelson KM, Squires TM, Loewen MK, Jadhav AS, Ross ARS, Taylor DC, Abrams SR (2004) A new abscisic acid catabolic pathway. Plant Physiol 134:361–369

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaharu Mizutani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizutani, M., Todoroki, Y. ABA 8′-hydroxylase and its chemical inhibitors. Phytochem Rev 5, 385–404 (2006). https://doi.org/10.1007/s11101-006-9012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-006-9012-6

Keywords

Navigation