Skip to main content
Log in

Strategies for the Production of Recombinant Protein in Escherichia coli

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

In the recent past years, a large number of proteins have been expressed in Escherichia coli with high productivity due to rapid development of genetic engineering technologies. There are many hosts used for the production of recombinant protein but the preferred choice is E. coli due to its easier culture, short life cycle, well-known genetics, and easy genetic manipulation. We often face a problem in the expression of foreign genes in E. coli. Soluble recombinant protein is a prerequisite for structural, functional and biochemical studies of a protein. Researchers often face problems producing soluble recombinant proteins for over-expression, mainly the expression and solubility of heterologous proteins. There is no universal strategy to solve these problems but there are a few methods that can improve the level of expression, non-expression, or less expression of the gene of interest in E. coli. This review addresses these issues properly. Five levels of strategies can be used to increase the expression and solubility of over-expressed protein; (1) changing the vector, (2) changing the host, (3) changing the culture parameters of the recombinant host strain, (4) co-expression of other genes and (5) changing the gene sequences, which may help increase expression and the proper folding of desired protein. Here we present the resources available for the expression of a gene in E. coli to get a substantial amount of good quality recombinant protein. The resources include different strains of E. coli, different E. coli expression vectors, different physical and chemical agents and the co expression of chaperone interacting proteins. Perhaps it would be the solutions to such problems that will finally lead to the maturity of the application of recombinant proteins. The proposed solutions to such problems will finally lead to the maturity of the application of recombinant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

aa:

Amino acid

bp:

Base pairs

GST:

Glutathione S-transferase

HAT:

Histone acetyltransferase

IPTG:

Isopropylthio-β-galactoside

MBP:

Maltose binding protein

NEB:

New England Biolabs

MCS:

Multiple cloning site

Ni-NTA:

Nickel nitrilotriacetic acid

ORF:

Open reading frame

SUMO:

Small ubiquitin modifier

Trx:

Thioredoxin

References

  1. Bruno M, Walker JE (1996) J Mol Biol 260:289–298

    Article  Google Scholar 

  2. Butt TR, Edavettal SC, Hall JP, Mattern MR (2005) Protein Expr Purif 43:1–9

    Google Scholar 

  3. Collins-Racie LA, McColgan JM, Grant KL, DiBlasio-Smith EA, McCoy JM, LaVallie ER (1995) Biotechnology (NY) 13:982–987

    Article  CAS  Google Scholar 

  4. Davis GD, Elisee C, Newham DM, Harrison RG (1999) Biotechnol Bioeng 65:382–388

    Article  CAS  Google Scholar 

  5. deMarco A, Vigh L, Diamant S, Goloubinoff P (2005) Cell Stress Chaperones 10:329–339

    Article  CAS  Google Scholar 

  6. Diamant S (2003) Mol Microbiol 49:401–410

    Article  CAS  Google Scholar 

  7. diGuan C, Li P, Riggs PD, Inouye H (1988) Gene 67:21–30

    Article  CAS  Google Scholar 

  8. Dinnbier U, Limpinse E, Schmid R, Bakker EP (1988) Arch Microbiol 150:348–357

    Article  CAS  Google Scholar 

  9. Gräslund S, Nordlund P, Weigelt J, Gunsalus KC (2008) Nat Methods 5(2):135–146

    Article  Google Scholar 

  10. Grunberg-Manago M (1999) Annu Rev Genet 33:193–227

    Article  CAS  Google Scholar 

  11. Harrison RG (2000) Innovations 11:4–7

    Google Scholar 

  12. Hu J, Qin H, Gao FP, Cross TA (2011) Protein Expr Purif 80(1):34–40

    Article  CAS  Google Scholar 

  13. Kido M, Yamanaka K, Mitani T, Niki H, Ogura T, Hiraga S (1996) J Bacteriol 178:3917–3925

    CAS  Google Scholar 

  14. Lars-Nieba L, Honegger A, Krebber C, Pluckthun A (1997) Protein Eng 10:435–444

    Article  Google Scholar 

  15. Laurence DS, Cariot G, Vuillard L (2004) Protein Expr Purif 37(1):203–206

    Article  Google Scholar 

  16. LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM (1993) Biotechnology (NY) 11:187–193

    Article  CAS  Google Scholar 

  17. Lee N, Zhang SQ, Cozzitorto J, Yang JS, Testa D (1987) Gene 58:77–86

    Article  CAS  Google Scholar 

  18. Lopez PJ, Marchand I, Joyce SA, Dreyfus M (1999) Mol Microbiol 33:188–199

    Article  CAS  Google Scholar 

  19. Makino T, Skretas G, Georgiou G (2011) Microb Cell Fact 14:10–32

    Google Scholar 

  20. Makrides SC (1996) Microbiol Rev 60:516–538

    Google Scholar 

  21. Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR (2006) Protein Sci 15:182–189

    Article  CAS  Google Scholar 

  22. Michael W, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002) Science 298:1790–1793

    Article  Google Scholar 

  23. Missiakas D (1994) EMBO J 13(8):2013–2020

    CAS  Google Scholar 

  24. Novy R (1995) Innovations 3–7

  25. Prinz WA, Aslund F, Holmgren A, Beckwith J (1997) J Biol Chem 272:15661–15667

    Article  CAS  Google Scholar 

  26. Raina S, Missiakas D (1997) Annu Rev Microbiol 51:179–202

    Article  CAS  Google Scholar 

  27. Redwan ELRM (2006) Arab J Biotechnol 9(3):493–510

    Google Scholar 

  28. Schlegel S, Löfblom J, Lee C, Hjelm A, Klepsch M, Strous M, Drew D, Slotboom DJ, de Gier JW (2012) J Mol Biol 423(4):648–659

    Article  CAS  Google Scholar 

  29. Schlegel S, Rujas E, Ytterberg AJ, Zubarev RA, Luirink J, de Gier JW (2013) Microb Cell Fact 12(12):24

    Article  CAS  Google Scholar 

  30. Schultz T, Liu J, Capasso P, de Marco A (2007) Biochem Biophys Res Commun 355:234–239

    Article  CAS  Google Scholar 

  31. Smith DB, Johnson KS (1988) Gene 67:31–40

    Article  CAS  Google Scholar 

  32. Steczko J, Donoho GA, Dixon JE, Sugimoto T, Axelrod B (1991) Protein Expr Purif 2:221–227

    Article  CAS  Google Scholar 

  33. Valderrama-Rincon JD, Fisher AC, Merritt JH, Fan YY, Reading CA, Chhiba K, Heiss C, Azadi P, Aebi M, DeLisa MP (2012) Nat Chem Biol 8(5):434–436

    Article  CAS  Google Scholar 

  34. Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Högbom M, Van Wijk KJ, Slotboom DJ, Persson JO, deGier JW (2008) Proc Natl Acad Sci 105(38):14371–14376

    Article  CAS  Google Scholar 

  35. Zapun A, Missiakas D, Raina S, Creighton TE (1995) Biochemistry 34:5075–5089

    Article  CAS  Google Scholar 

  36. Zuo X, Li S, Hall J, Mattern MR, Tran H, Shoo J, Tan R, Weiss SR, Butt TR (2005) J Struct Funct Genomics 6:103–111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G.J.G. acknowledges the University Grant Commission (UGC), New Delhi, India for endowing him the Dr. D. S. Kothari Post Doctoral Fellowship and Prof. Rakesh Bhatnagar [School of Biotechnology, Jawaharlal Nehru University (JNU), New Delhi, India] for providing the opportunity to work in his lab. The authors are thankful to the Departments of Biotechnology, JNU, New Delhi, India and National Institute of Technology, Raipur (CG), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awanish Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopal, G.J., Kumar, A. Strategies for the Production of Recombinant Protein in Escherichia coli . Protein J 32, 419–425 (2013). https://doi.org/10.1007/s10930-013-9502-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9502-5

Keywords

Navigation