Skip to main content

Advertisement

Log in

Production of carbon fibres from a pyrolysed and graphitised liquid crystalline cellulose fibre precursor

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Regenerated cellulose fibres, spun from a liquid crystalline precursor, were pyrolysed at temperatures in the range 400–2,500 °C. Raman spectroscopy and X-ray diffraction showed that the degree of graphitisation of the fibre increased with increasing temperature. Electron microscopy, however, suggested that the fibres have a skin–core structure. This observation was confirmed by micro-Raman analysis, whereupon the ratio of the intensities of the D and G bands shows that the skin consists of a graphitised structure, whereas the core consists of significantly less graphitised material. The contributions of the graphitised skin and the inner core to the potential mechanical properties of the fibres were also assessed by following the position of the 2D Raman band during tensile deformation of the fibre. The Raman band shift rate against strain was used to evaluate the fibre modulus, which suggested a modulus of ~140 GPa for the skin and 40 GPa for the core, respectively. If this incomplete graphitisation could be overcome, then there is potential to produce carbon fibres from these novel precursor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chung DDL (1994) Carbon fibre composites. Butterworth-Heinemann, Boston

    Google Scholar 

  2. Plaisantin H, Pailler R, Guette A et al (2001) Compos Sci Technol 61:2063

    Article  CAS  Google Scholar 

  3. Fabbri D, Prati S, Vassura I, Chiavari G (2003) J Anal Appl Pyrolysis 68–9:163

    Article  Google Scholar 

  4. Kaburagi Y, Hosoya K, Yoshida A, Hishiyama Y (2005) Carbon 43:2817

    Article  CAS  Google Scholar 

  5. Dumanh AG, Windle AH (2012) J Mater Sci 47:4236. doi:10.1007/s10853-011-6081-8

    Article  Google Scholar 

  6. Boerstoel H, Maatman H, Westerink JB, Koenders BM (2001) Polymer 42:7371

    Article  CAS  Google Scholar 

  7. Mottershead B, Eichhorn SJ (2007) Compos Sci Technol 67:2150

    Article  CAS  Google Scholar 

  8. Eichhorn SJ, Young RJ, Davies RJ, Riekel C (2003) Polymer 44:5901

    Article  CAS  Google Scholar 

  9. Kim DY, Nishiyama Y, Wada M, Kuga S (2001) Carbon 39:1051

    Article  CAS  Google Scholar 

  10. Endo M (1988) J Mater Sci 23:598. doi:10.1007/BF01174692

    Article  CAS  Google Scholar 

  11. Zickler GA, Wagermaier W, Funari SS, Burghammer M, Paris O (2007) J Anal Appl Pyrolysis 80:134

    Article  CAS  Google Scholar 

  12. Casiraghi C, Hartschuh A, Qian H et al (2009) Nano Lett 9:1433

    Article  CAS  Google Scholar 

  13. Ferrari AC, Meyer JC, Scardaci V et al (2006) Phys Rev Lett 97:187401

    Article  CAS  Google Scholar 

  14. Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126

    Article  CAS  Google Scholar 

  15. Huang Y, Young RJ (1993) J Mater Sci Lett 12:92

    CAS  Google Scholar 

  16. Huang YL, Young RJ (1994) J Mat Sci 29:4027. doi:10.1007/BF00355965

    Article  CAS  Google Scholar 

  17. Young RJ, Andrews MC (1994) Mater Sci Eng A 184:197

    Article  CAS  Google Scholar 

  18. Cooper CA, Young RJ, Halsall M (2001) Composites A Appl Sci Manuf 32:401

    Article  Google Scholar 

  19. Nemanich RJ, Solin SA (1979) Phys Rev B 20:392

    Article  CAS  Google Scholar 

  20. Robinson IM, Zakikhani M, Day RJ, Young RJ, Galiotis C (1987) J Mater Sci Lett 6:1212

    Article  CAS  Google Scholar 

  21. Gong L, Kinloch IA, Young RJ, Riaz I, Jalil R, Novoselov KS (2010) Adv Mater 22:2694

    Article  CAS  Google Scholar 

  22. Northolt MG, Boerstoel H, Maatman H, Huisman R, Veurink J, Elzerman H (2001) Polymer 42:8249

    Article  CAS  Google Scholar 

  23. Kong K, Eichhorn SJ (2005) Polymer 46:6380

    Article  CAS  Google Scholar 

  24. Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon JMD (1998) J Mater Chem 8:2875

    Article  CAS  Google Scholar 

  25. Marquardt DW (1963) J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  26. Tang MM, Bacon R (1964) Carbon 2:211

    Article  CAS  Google Scholar 

  27. Ohlberg SM, Alexander LE, Warrick EL (1958) J Polym Sci 27:1

    Article  CAS  Google Scholar 

  28. Ferrari AC, Robertson J (2000) Phys Rev B 61:14095

    Article  CAS  Google Scholar 

  29. Ferrari AC (2007) Solid State Commun 143:47

    Article  CAS  Google Scholar 

  30. Zickler GA, Smarsly B, Gierlinger N, Peterlik H, Paris O (2006) Carbon 44:3239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the EPSRC (EP/F036914/1) for funding this research. We would also like to thank Dr Chris Stirling of Morganite Electrical Carbon Limited for assistance with the graphitisation of the Bocell fibres.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Eichhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, K., Deng, L., Kinloch, I.A. et al. Production of carbon fibres from a pyrolysed and graphitised liquid crystalline cellulose fibre precursor. J Mater Sci 47, 5402–5410 (2012). https://doi.org/10.1007/s10853-012-6426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6426-y

Keywords

Navigation