Skip to main content

Advertisement

Log in

The Microtubule-Associated Protein 1A (MAP1A) is an Early Molecular Target of Soluble Aβ-Peptide

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A progressive accumulation of amyloid β-protein (Aβ) is widely recognized as a pathological hallmark of Alzheimer’s disease (AD). Substantial progress has been made toward understanding the neurodegenerative cascade initiated by small soluble species of Aβ and recent evidence supports the notion that microtubule rearrangements may be proximate to neuritic degeneration and deficits in episodic declarative memory. Here, we examined primary cortical neurons for changes in markers associated with synaptic function following exposure to sublethal concentrations of non-aggregated Aβ-peptide. This data show that soluble Aβ species at a sublethal concentration induce degradation of the microtubule-associated protein 1A (MAP1A) without concurrently affecting dendritic marker MAP2 and/or the pre-synaptic marker synaptophysin. In addition, MAP1A was found to highly co-localize with the postsynaptic density-95 (PSD-95) protein, proposing that microtubule perturbations might be central for the Aβ-induced neuronal dysfunctions as PSD-95 plays a key role in synaptic plasticity. In conclusion, this study suggests that disruption of MAP1A could be a very early manifestation of Aβ-mediated synaptic dysfunction—one that presages the clinical onset of AD by years. Moreover, our data support the notion of microtubule-stabilizing agents as effective AD drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Faller EM, Villeneuve TS, Brown DL (2009) MAP1a associated light chain 3 increases microtubule stability by suppressing microtubule dynamics. Mol Cell Neurosci 41(1):85–93

    Article  PubMed  CAS  Google Scholar 

  • Fifre A, Sponne I, Koziel V, Kriem B, Yen Potin FT, Bihain BE, Olivier JL, Oster T, Pillot T (2006) Microtubule-associated protein MAP1A, MAP1B, and MAP2 proteolysis during soluble amyloid beta-peptide-induced neuronal apoptosis. Synergistic involvement of calpain and caspase-3. J Biol Chem 281(1):229–240

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  PubMed  CAS  Google Scholar 

  • Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96(6):3228–3233

    Article  PubMed  CAS  Google Scholar 

  • Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ (2011) Soluble amyloid {beta}-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci USA 108(14):5819–5824

    Article  PubMed  CAS  Google Scholar 

  • Klein WL (2006) Synaptic targeting by A beta oligomers (ADDLS) as a basis for memory loss in early Alzheimer’s disease. Alzheimers Dement 2(1):43–55

    Article  PubMed  Google Scholar 

  • Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, Klein WL (2004) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24(45):10191–10200

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW Jr, Morris JC (2001) Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 56(1):127–129

    PubMed  CAS  Google Scholar 

  • Michaelis ML, Ansar S, Chen Y, Reiff ER, Seyb KI, Himes RH, Audus KL, Georg GI (2005) {beta}-Amyloid-induced neurodegeneration and protection by structurally diverse microtubule-stabilizing agents. J Pharmacol Exp Ther 312(2):659–668

    Article  PubMed  CAS  Google Scholar 

  • Nieto A, Correas I, Montejo de Garcini E, Avila J (1988) A modified form of microtubule-associated tau protein is the main component of paired helical filaments. Biochem Biophys Res Commun 154(2):660–667

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Condron MM, Teplow DB (2009) Structure–neurotoxicity relationships of amyloid beta-protein oligomers. Proc Natl Acad Sci USA 106(35):14745–14750

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Munoz AM, Nieto-Escamez FA, Aznar S, Colomina MT, Sanchez-Santed F (2011) Cognitive and histological disturbances after chlorpyrifos exposure and chronic Abeta(1–42) infusions in Wistar rats. Neurotoxicology 32(6):836–844

    Article  PubMed  CAS  Google Scholar 

  • Schoenfeld TA, McKerracher L, Obar R, Vallee RB (1989) MAP 1A and MAP 1B are structurally related microtubule associated proteins with distinct developmental patterns in the CNS. J Neurosci 9(5):1712–1730

    PubMed  CAS  Google Scholar 

  • Shankar GM, Leissring MA, Adame A, Sun X, Spooner E, Masliah E, Selkoe DJ, Lemere CA, Walsh DM (2009) Biochemical and immunohistochemical analysis of an Alzheimer’s disease mouse model reveals the presence of multiple cerebral Abeta assembly forms throughout life. Neurobiol Dis 36(2):293–302

    Article  PubMed  CAS  Google Scholar 

  • Sponne I, Fifre A, Drouet B, Klein C, Koziel V, Pincon-Raymond M, Olivier JL, Chambaz J, Pillot T (2003) Apoptotic neuronal cell death induced by the non-fibrillar amyloid-beta peptide proceeds through an early reactive oxygen species-dependent cytoskeleton perturbation. J Biol Chem 278(5):3437–3445

    Article  PubMed  CAS  Google Scholar 

  • Szebenyi G, Bollati F, Bisbal M, Sheridan S, Faas L, Wray R, Haferkamp S, Nguyen S, Caceres A, Brady ST (2005) Activity-driven dendritic remodeling requires microtubule-associated protein 1A. Curr Biol 15(20):1820–1826

    Article  PubMed  CAS  Google Scholar 

  • Tong L, Balazs R, Thornton PL, Cotman CW (2004) Beta-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons. J Neurosci 24(30):6799–6809

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44(1):181–193

    Article  PubMed  CAS  Google Scholar 

  • Wasling P, Daborg J, Riebe I, Andersson M, Portelius E, Blennow K, Hanse E, Zetterberg H (2009) Synaptic retrogenesis and amyloid-beta in Alzheimer’s disease. J Alzheimers Dis 16(1):1–14

    PubMed  CAS  Google Scholar 

  • Wei Z, Song MS, MacTavish D, Jhamandas JH, Kar S (2008) Role of calpain and caspase in beta-amyloid-induced cell death in rat primary septal cultured neurons. Neuropharmacology 54(4):721–733

    Article  PubMed  CAS  Google Scholar 

  • Wimo A, Winblad B, Aguero-Torres H, von Strauss E (2003) The magnitude of dementia occurrence in the world. Alzheimer Dis Assoc Disord 17(2):63–67

    Article  PubMed  Google Scholar 

  • Zempel H, Thies E, Mandelkow E, Mandelkow EM (2010) Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30(36):11938–11950

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Lundbeck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clemmensen, C., Aznar, S., Knudsen, G.M. et al. The Microtubule-Associated Protein 1A (MAP1A) is an Early Molecular Target of Soluble Aβ-Peptide. Cell Mol Neurobiol 32, 561–566 (2012). https://doi.org/10.1007/s10571-011-9796-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9796-9

Keywords

Navigation