Skip to main content
Log in

“Chelatable iron pool”: inositol 1,2,3-trisphosphate fulfils the conditions required to be a safe cellular iron ligand

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Mammalian cells contain a pool of iron that is not strongly bound to proteins, which can be detected with fluorescent chelating probes. The cellular ligands of this biologically important “chelatable”, “labile” or “transit” iron are not known. Proposed ligands are problematic, because they are saturated by magnesium under cellular conditions and/or because they are not “safe”, i.e. they allow iron to catalyse hydroxyl radical formation. Among small cellular molecules, certain inositol phosphates (InsPs) excel at complexing Fe3+ in such a “safe” manner in vitro. However, we previously calculated that the most abundant InsP, inositol hexakisphosphate, cannot interact with Fe3+ in the presence of cellular concentrations of Mg2+. In this work, we study the metal complexation behaviour of inositol 1,2,3-trisphosphate [Ins(1,2,3)P 3], a cellular constituent of unknown function and the simplest InsP to display high-affinity, “safe”, iron complexation. We report thermodynamic constants for the interaction of Ins(1,2,3)P 3 with Na+, K+, Mg2+, Ca2+, Cu2+, Fe2+ and Fe3+. Our calculations indicate that Ins(1,2,3)P 3 can be expected to complex all available Fe3+ in a quantitative, 1:1 reaction, both in cytosol/nucleus and in acidic compartments, in which an important labile iron subpool is thought to exist. In addition, we calculate that the fluorescent iron probe calcein would strip Fe3+ from Ins(1,2,3)P 3 under cellular conditions, and hence labile iron detected using this probe may include iron bound to Ins(1,2,3)P 3. Therefore Ins(1,2,3)P 3 is the first viable proposal for a transit iron ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kakhlon O, Cabantchik ZI (2002) Free Radic Biol Med 33:1037–1046

    Article  PubMed  CAS  Google Scholar 

  2. Petrat F, de Groot H, Sustmann R, Rauen U (2002) Biol Chem 383:489–502

    Article  PubMed  CAS  Google Scholar 

  3. Domaille DW, Que EL, Chang CJ (2008) Nat Chem Biol 4:168–175

    Article  PubMed  CAS  Google Scholar 

  4. Haugland RP (2002) Handbook of fluorescent probes and research products. Molecular Probes Inc., Eugene, Oregon

    Google Scholar 

  5. Zhan H, Gupta RK, Weaver J, Pollack S (1990) Eur J Haematol 44:125–131

    Article  PubMed  CAS  Google Scholar 

  6. Engelmann MD, Bobier RT, Hiatt T, Cheng IF (2003) Biometals 16:519–527

    Article  PubMed  CAS  Google Scholar 

  7. Graf E, Mahoney JR, Bryant RG, Eaton JW (1984) J Biol Chem 259:3620–3624

    PubMed  CAS  Google Scholar 

  8. Richter Y, Fischer B (2006) J Biol Inorg Chem 11:1063–1074

    Article  PubMed  CAS  Google Scholar 

  9. Vile GF, Winterbourn CC, Sutton HC (1987) Arch Biochem Biophys 259:616–626

    Article  PubMed  CAS  Google Scholar 

  10. Irvine RF, Schell MJ (2001) Nat Rev Mol Cell Biol 2:327–338

    Article  PubMed  CAS  Google Scholar 

  11. Graf E, Empson KL, Eaton JW (1987) J Biol Chem 262:11647–11650

    PubMed  CAS  Google Scholar 

  12. Hawkins PT, Poyner DR, Jackson TR, Letcher AJ, Lander DA, Irvine RF (1993) Biochem J 294:929–934

    PubMed  CAS  Google Scholar 

  13. Phillippy BQ, Graf E (1997) Free Radic Biol Med 22:939–946

    Article  PubMed  CAS  Google Scholar 

  14. Spiers ID, Barker CJ, Chung SK, Chang YT, Freeman S, Gardiner JM, Hirst PH, Lambert PA, Michell RH, Poyner DR, Schwalbe CH, Smith AW, Solomons KR (1996) Carbohydr Res 282:81–99

    Article  PubMed  CAS  Google Scholar 

  15. Torres J, Domínguez S, Cerdá MF, Obal G, Mederos A, Irvine RF, Díaz A, Kremer C (2005) J Inorg Biochem 99:828–840

    Article  PubMed  CAS  Google Scholar 

  16. Barker CJ, French PJ, Moore AJ, Nilsson T, Berggren PO, Bunce CM, Kirk CJ, Michell RH (1995) Biochem J 306:557–564

    PubMed  CAS  Google Scholar 

  17. Barker CJ, Wright J, Hughes PJ, Kirk CJ, Michell RH (2004) Biochem J 380:465–473

    Article  PubMed  CAS  Google Scholar 

  18. Praveen T, Shashidhar MS (2001) Carbohydr Res 330:409–411

    Article  PubMed  CAS  Google Scholar 

  19. Gans P, Sabatini A, Vacca A (1996) Talanta 43:1739–1753

    Article  PubMed  CAS  Google Scholar 

  20. Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Coord Chem Rev 184:311–318

    Article  CAS  Google Scholar 

  21. Dozol H, Blum-Held C, Guédat P, Maechling C, Lanners S, Schlewer G, Spiess B (2002) J Mol Struct 643:171–181

    Article  CAS  Google Scholar 

  22. Bieth H, Jost P, Spiess B (1990) J Inorg Biochem 39:59–73

    Article  CAS  Google Scholar 

  23. Mernissi-Arifi K, Bieth H, Schlewer G, Spiess B (1995) J Inorg Biochem 57:127–133

    Article  CAS  Google Scholar 

  24. Torres J, Veiga N, Gancheff J, Domínguez S, Mederos A, Sundberg M, Sánchez A, Castiglioni J, Díaz A, Kremer C (2008) J Mol Struct 874:77–88

    Article  CAS  Google Scholar 

  25. Mernissi-Arifi K, Wehrer C, Schlewer G, Spiess B (1994) J Inorg Biochem 55:263–277

    Article  CAS  Google Scholar 

  26. Wu MM, Llopis J, Adams S, McCaffery JM, Kulomaa MS, Machen TE, Moore HP, Tsien RY (2000) Chem Biol 7:197–209

    Article  PubMed  CAS  Google Scholar 

  27. Grubbs RD (2002) Biometals 15:251–259

    Article  PubMed  CAS  Google Scholar 

  28. Petrat F, de Groot H, Rauen U (2001) Biochem J 356:61–69

    Article  PubMed  CAS  Google Scholar 

  29. Tenopoulou M, Kurz T, Doulias PT, Galaris D, Brunk UT (2007) Biochem J 403:261–266

    Article  PubMed  CAS  Google Scholar 

  30. Yu Z, Persson HL, Eaton JW, Brunk UT (2003) Free Radic Biol Med 34:1243–1252

    Article  PubMed  CAS  Google Scholar 

  31. Yu J, Leibiger B, Yang SN, Caffery JJ, Shears SB, Leibiger IB, Barker CJ, Berggren PO (2003) J Biol Chem 278:46210–46218

    Article  PubMed  CAS  Google Scholar 

  32. Ali N, Craxton A, Shears SB (1993) J Biol Chem 268:6161–6167

    PubMed  CAS  Google Scholar 

  33. Thomas F, Serratrice G, Béguin C, Saint Aman E, Pierre JL, Fontecave M, Laulhère JP (1999) J Biol Chem 274:13375–13383

    Article  PubMed  CAS  Google Scholar 

  34. Spiers ID, Freeman S, Poyner DR, Schwalbe CH (1995) Tetrahedron Lett 36:2125–2128

    Article  CAS  Google Scholar 

  35. Bieth H, Schlewer G, Spiess B (1991) J Inorg Biochem 41:37–44

    Article  PubMed  CAS  Google Scholar 

  36. Bottari E, Anderegg G (1967) Helv Chim Acta 50:2349–2356

    Article  CAS  Google Scholar 

  37. Chinea E, Domínguez S, Mederos A (1995) J Inorg Biochem 34:1579–1587

    Article  CAS  Google Scholar 

  38. Kiss T, Buglyo P, Sanna D, Micera G (1995) Inorg Chim Acta 239:145–153

    Article  CAS  Google Scholar 

  39. Martin R (1986) J Inorg Biochem 28:181–187

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

AD is grateful to the Biochemical Society for a bursary to attend the Harden Conference on Inositol Phosphates and Lipids. CB acknowledges the Karolinska Institutet and Novo Nordisk Foundation. NV is indebted to PEDECIBA-Química and ANII for a scholarship. The authors are grateful to Prof. Sung-Kee Chung (Pohang University of Science and Technology, Korea) for generously providing 1,2,3-InsP 3 standards and to Prof. Robin F. Irvine (University of Cambridge, UK) for encouraging discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alvaro Díaz or Carlos Kremer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veiga, N., Torres, J., Mansell, D. et al. “Chelatable iron pool”: inositol 1,2,3-trisphosphate fulfils the conditions required to be a safe cellular iron ligand. J Biol Inorg Chem 14, 51–59 (2009). https://doi.org/10.1007/s00775-008-0423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0423-2

Keywords

Navigation