Skip to main content
Log in

Air temperature in Barcelona metropolitan region from MODIS satellite and GIS data

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The metropolitan region of Barcelona (BMR) is one of the most densely populated areas in the Mediterranean countries. The estimation of air temperature at a short scale from satellite measurements would contribute to a better understanding of the varied and complex spatial distribution of temperatures in BMR. This estimation would be a first step to study several patterns of the thermometric regime affecting population life quality and health. Taking advantage of MODIS data, air temperature measurements at 48 thermometric stations along the year 2015, together with their geographic and topographic data, multiple regression analyses have permitted to obtain fine spatial distributions (pixels of 1 km2) of minimum, mean and maximum daily air temperatures. Previous to the multiple regression, Pearson coefficients and principal component analysis offer a first overview of the relevance of the variables on the empiric temperatures. The most relevant variables on the multiple regression process at annual and seasonal scale are land surface temperatures, latitude, longitude and calendar day. At a monthly scale, altitude (maximum temperature) and continentality (cold months for minimum and hot months for maximum temperatures) are also relevant. The best fits between empiric temperatures and those derived from the multiple regression processes have square regression coefficients within the range (0.92–0.96) for the annual case, (0.70–0.92) at seasonal scale and (0.52–0.87) at monthly scale. The root mean square error varies from 1.5 to 2.0 °C (annual case), from 1.3 to 2.0 °C (seasonal scale) and from 1.2 to 2.1 °C (monthly scale). In agreement with these regression coefficients and mean square errors, the obtained spatial distribution of temperatures is of notable quality. As an outstanding application, the detection of several urban heat islands on different conurbations within BMR along the Mediterranean coast becomes possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26

    Google Scholar 

  • Benali A, Carvalho AC, Nunes JP, Carvalhais N, Santos A (2012) Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens Environ 124:108–121

    Google Scholar 

  • Buishand TA (1982) Some methods for testing the homogeneity of rainfall records. J Hydrol 58:11–27

    Google Scholar 

  • Bustos E, Meza FJ (2015) A method to estimate maximum and minimum air temperature using MODIS surface temperature and vegetation data: application to the Maipo Basin, Chile. Theor Appl Climatol 120:211–226. https://doi.org/10.1007/s00704-014-1167-2

    Article  Google Scholar 

  • Caselles V, Lopez Garcia MJ, Melia J, Perez Cueva AJ (1991) Analysis of the heat-island effect of the city of Valencia, Spain, through air temperature transects and NOAA satellite data. Theor Appl Climatol 43:195–203

    Google Scholar 

  • Cheval S, Dumitrescu A (2009) The July urban heat island of Bucharest as derived from Modis images. Theor Appl Climatol 96:145–153. https://doi.org/10.1007/s00704-008-0019-3

    Article  Google Scholar 

  • Cheval S, Dumitrescu A, Bell A (2009) The urban heat island of Bucharest during the extreme high temperatures of July 2007. Theor Appl Climatol 97:391–401. https://doi.org/10.1007/s00704-008-0088-3

    Article  Google Scholar 

  • Coll C, Caselles V, Galve JM, Valor E, Raquel NR, Sánchez JM, Rivas R (2005) Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sens Environ 97:288–300

    Google Scholar 

  • Cresswell MP, Morse AP, Thomson MC, Connor SJ (1999) Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model. Int J Remote Sens 20(6):1125–1132. https://doi.org/10.1080/014311699212885

    Article  Google Scholar 

  • Cristóbal J, Ninyerola M, Pons X (2008) Modeling air temperature through a combination of remote sensing and GIS data. J Geophys Res 113:D13106. https://doi.org/10.1029/2007JD009318

    Article  Google Scholar 

  • Dash P, Gottsche FM, Olesen FS, Fischer H (2001) Retrieval of land surface temperature and emissivity from satellite data: physics, theoretical limitations and current methods. J Indian Soc Remote Sens 29:23–30

    Google Scholar 

  • Dash P, Göttsche FM, Olesen FS, Fischer H (2002) Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends. Int J Remote Sens 23(13):2563–2594. https://doi.org/10.1080/01431160110115041

    Article  Google Scholar 

  • Didari S, Norouzi H, Zand-Parsa S, Khanbilvardi R (2017) Estimation of daily minimum land surface air temperature using MODIS data in southern Iran. Theor Appl Climatol 130:1149–1161. https://doi.org/10.1007/s00704-016-1945-0

    Article  Google Scholar 

  • Fabrizi R, De Santis A, Gómez A (2011) Satellite und ground based sensors for the urban heat island analysis in the city of Madrid. Joint Urban Remote Sensing Event, Munich, pp 349–352

    Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Google Scholar 

  • Fu G, Shen Z, Zhang X, Shi P, Zhang Y, Wu J (2011) Estimating air temperature of an alpine meadow on the Northern Tibetan Plateau using MODIS land surface temperature. Acta Ecol Sin 31:8–13

    Google Scholar 

  • Gallo KP, Tarpley JD, McNab AL, Karl TR (1995) Assessment of urban heat islands: a satellite perspective. Atmos Res 37:37–43

    Google Scholar 

  • Giannaros TM, Melas D (2012) Study of the urban heat island in a coastal Mediterranean City: the case study of Thessaloniki, Greece. Atmos Res 118:103–120

    Google Scholar 

  • Good E (2015) Daily minimum and maximum surface air temperatures from geostationary satellite data. J Geophys Res Atmos 120:2306–2324. https://doi.org/10.1002/2014JD022438

    Article  Google Scholar 

  • Harrell FE (2001) Regression modelling strategies, With applications to linear models, logistic regression models, and survival analysis. Springer, New York, 568 pp

    Google Scholar 

  • Hengl T, Heuvelink GBM, Percec TM, Pebesma EJ (2012) Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. Theor Appl Climatol 107:265–277. https://doi.org/10.1007/s00704-011-0464-2

    Article  Google Scholar 

  • Hung T, Uchihama D, Ochi S, Yasuoka Y (2006) Assessment with satellite data of the urban heat island effects in Asian mega cities. Int J Appl Earth Obs Geoinf 8:34–48

    Google Scholar 

  • Imhoff ML, Zhang P, Wolfe RE, Bounoua L (2010) Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens Environ 114:504–513

    Google Scholar 

  • Janatian N, Sadeghi M, Sanaeinejad SH, Bakhshian E, Farid A, Hasheminiaa SM, Ghazanfari S (2017) A statistical framework for estimating air temperature using MODIS land surface temperature data. Int J Climatol 37:1181–1194

    Google Scholar 

  • Jang K, Kang S, Kimball JS, Hong SY (2014) Retrievals of all-weather daily air temperature using MODIS and AMSR-E data. Remote Sens 6:8387–8404. https://doi.org/10.3390/rs6098387

    Article  Google Scholar 

  • Jin M, Dickinson RE, Zhang DL (2005) The footprint of urban areas on global climate as characterized by MODIS. J Clim 18:1551–1565

    Google Scholar 

  • Jolliffe IT (1986) Principal component analysis. In: Springer series in statistics. Springer, New York 271 pp

    Google Scholar 

  • Kilibarda M, Hengl T, Heuvelink GBM, Gräler B, Pebesma E, PercecTadic M, Bajat N (2014) Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. J Geophys Res Atmos 119:2294–2313. https://doi.org/10.1002/2013JD020803

    Article  Google Scholar 

  • Kloog I, Nordio F, Lepeule J, Andrea PA, Lee M, Auffray A, Schwartz J (2017) Modelling spatio-temporally resolved air temperature across the complex geo-climate area of France using satellite-derived land surface temperature data. Int J Climatol 37:296–304

    Google Scholar 

  • Landsberg HE (1981) The urban climate. International Geophysics Series, 28. Academic Press, New York 275 pp

    Google Scholar 

  • Lin S, Moore NJ, Messina JP, DeVisser MH, Wu J (2012) Evaluation of estimating daily maximum and minimum air temperature with MODIS data in east Africa. Int J Appl Earth Obs Geoinf 18:128–140

    Google Scholar 

  • Lin X, Zhang W, Huang Y, Sun W, Han P, Yu L, Sun F (2016) Empirical estimation of near-surface air temperature in China from MODIS LST data by considering physiographic features. Remote Sens 8:629. https://doi.org/10.3390/rs8080629

    Article  Google Scholar 

  • Ma W, Zhou L, Zhang H, Zhang Y, Dai X (2016) Air temperature field distribution estimations over a Chinese mega-city using MODIS land surface temperature data: the case of Shanghai. Front Earth Sci 10:38–48. https://doi.org/10.1007/s11707-015-0510-y

    Article  Google Scholar 

  • Martínez MD, Serra C, Burgueño A, Lana X (2010) Time trends of daily maximum and minimum temperatures in Catalonia (ne Spain) for the period 1975–2004. Int J Climatol 30:267–290

    Google Scholar 

  • Mendelsohn R, Kurukulasuriya P, Basist A, Kogan F, Williams C (2007) Climate analysis with satellite versus weather station data. Clim Chang 81:71–83. https://doi.org/10.1007/s10584-006-9139-x

    Article  Google Scholar 

  • Miao S, Chen F, Lemone MA, Tewari M, Li Q, Wang Y (2009) An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J Appl Meteorol Climatol 48:484–501

    Google Scholar 

  • Moreno-Garcia MC (1994) Intensity and form of the urban heat island in Barcelona. Int J Climatol 14:705–710

    Google Scholar 

  • Nemani RR, Running SW (1989) Estimation of regional surface resistance to evapotranspiration from NDVI and thermal IR AVHRR data. J Appl Meteorol 28:276–284

    Google Scholar 

  • Nieto H, Sandholt I, Aguado I, Chuvieco E, Stisen S (2011) Air temperature estimation with MSG-SEVIRI data: calibration and validation of the TVX algorithm for the Iberian Peninsula. Remote Sens Environ 115:107–116

    Google Scholar 

  • Peón J, Recondo C, Calleja JF (2014) Improvements in the estimation of daily minimum air temperature in peninsular Spain using MODIS land surface temperature. Int J Remote Sens 35:5148–5166

    Google Scholar 

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. J Appl Stat 28(2):126–135

    Google Scholar 

  • Pongrácz R, Bartholy J, Dezsö Z (2006) Remotely sensed thermal information applied to urban climate analysis. Adv Space Res 37:2191–2196

    Google Scholar 

  • Pongrácz R, Bartholy J, Dezsö Z (2010) Application of remotely sensed thermal information to urban climatology of Central European cities. Phys Chem Earth 35:95–99

    Google Scholar 

  • Preisendorfer RW (1988) Principal component analysis in meteorology and oceanograph. Elsevier, New York

    Google Scholar 

  • Prihodko L, Goward SN (1997) Estimation of air temperature sensed surface observations from remotely. Remote Sens Environ 60:335–346

    Google Scholar 

  • Rao PK (1972) Remote sensing of urban “heat islands” from an environmental satellite. Bull Am Meteorol Soc 53:647–648

    Google Scholar 

  • Recondo C, Peón JJ, Zapico E, Pendás E (2013) Empirical models for estimating daily surface water vapour pressure, air temperature, and humidity using MODIS and spatiotemporal variables. Applications to peninsular Spain. Int J Remote Sens 34:8051–8080. https://doi.org/10.1080/01431161.2013.828185

    Article  Google Scholar 

  • Richman RB (1986) Rotation of principal components. Int J Climatol 6:293–335. https://doi.org/10.1002/joc.3370060305

    Article  Google Scholar 

  • Schneider A, Friedl MA, Potere D (2009) A new map of global urban extent from MODIS satellite data. Environ Res Lett 4:044003. https://doi.org/10.1088/1748-9326/4/4/044003

    Article  Google Scholar 

  • Shah DB, Pandya MR, Trivedi HJ, Jani AR (2013) Estimating minimum and maximum air temperature using MODIS data over Indo-Gangetic Plain. J Earth Syst Sci 122:1593–1605

    Google Scholar 

  • Shen S, Leptoukh GG (2011) Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature. Environ Res Lett 6:045206

    Google Scholar 

  • Sohrabinia M, Zawar-Reza P, Rack W (2015) Spatio-temporal analysis of the relationship between LST from MODIS and air temperature in New Zealand. Theor Appl Climatol 119:567–583

    Google Scholar 

  • Stewart ID (2011) A systematic review and scientific critique of methodology in modern urban heat island literature. Int J Climatol 31:200–217

    Google Scholar 

  • Sun H, Chen Y, Gong A, Zhao X, Zhan W, Wang M (2014) Estimating mean air temperature using MODIS day and night land surface temperatures. Theor Appl Climatol 118:81–92

    Google Scholar 

  • Thanh NP, Kappas M, Degener J (2016) Estimating daily maximum and minimum land air surface temperature using MODIS land surface temperature data and ground truth data in northern Vietnam. Remote Sens 8:1002. https://doi.org/10.3390/rs8121002

    Article  Google Scholar 

  • Tomlinson CJ, Chapman L, Thornes JE, Baker C (2011) Remote sensing land surface temperature for meteorology and climatology: a review. Meteorol Appl 18:296–306

    Google Scholar 

  • Tomlinson CJ, Chapman L, Thornes JE, Baker CJ, Prieto-Lopez T (2012) Comparing night-time satellite land surface temperature from MODIS and ground measured air temperature across a conurbation. Remote Sens Lett 3:657–666. https://doi.org/10.1080/01431161.2012.659354

    Article  Google Scholar 

  • Vancutsem C, Ceccato P, Dinku T, Connor SJ (2010) Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens Environ 114:449–465

    Google Scholar 

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86:370–384

    Google Scholar 

  • Wan ZM, Zhang YL, Zhang QC, Li ZL (2002) Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens Environ 83:163–180

    Google Scholar 

  • Wan Z, Wang P, Li X (2004) Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. Int J Remote Sens 25(1):61–72

    Google Scholar 

  • Wang W, Liang S, Meyers T (2008) Validating MODIS land surface temperature products using long-term nighttime ground measurements. Remote Sens Environ 112:623–635

    Google Scholar 

  • Wang L, Koike T, Yang K, Yeh PJF (2009) Assessment of a distributed biosphere hydrological model against streamflow and MODIS land surface temperature in the upper Tone River Basin. J Hydrol 377:21–34

    Google Scholar 

  • Wenbin Z, Aifeng L, Shaofeng J (2013) Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens Environ 130:62–73

    Google Scholar 

  • Wijngaard JB, Klein Tank MG, Können GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23:679–692

    Google Scholar 

  • Williamson SN, Hik DS, Gamon JA, Kavanaugh JL, Koh S (2013) Evaluating cloud contamination in clear-sky MODIS Terra daytime land surface temperatures using ground-based meteorology station observations. J Clim 26:1551–1560

    Google Scholar 

  • Xu Y, Knudby A, Ho HC (2014) Estimating daily maximum air temperature from MODIS in British Columbia, Canada. Int J Remote Sens 35:8108–8121. https://doi.org/10.1080/01431161.2014.978957

    Article  Google Scholar 

  • Yang P, Ren G, Liu W (2013) Spatial and temporal characteristics of Beijing urban heat island intensity. J Appl Meteorol Climatol 52:1803–1816

    Google Scholar 

  • Yang YZ, Cai WH, Yang J (2017) Evaluation of MODIS land surface temperature data to estimate near-surface air temperature in Northeast China. Remote Sens 9:410. https://doi.org/10.3390/rs9050410

    Article  Google Scholar 

  • Yasuoka Y (2006) Assessment with satellite data of the urban heat island effects in Asian mega cities. Int J Appl Earth Obs Geoinf 8:34–48

    Google Scholar 

  • Zaksek K, Schroedter-Homscheidt M (2009) Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments. ISPRS J Photogramm Remote Sens 64(4):414–421

    Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84(3):471–475

    Google Scholar 

  • Zhang W, Huang Y, Yu Y, Sun W (2011) Empirical models for estimating daily maximum, minimum and mean air temperatures with MODIS land surface temperatures. Int J Remote Sens 32(24):9415–9440. https://doi.org/10.1080/01431161.2011.560622

    Article  Google Scholar 

Download references

Acknowledgements

Temperature data were gently provided by the Agencia Estatal de Meteorología, AEMET, and Servei Meteorològic de Catalunya, SMC.

Funding

This research has been supported by the Spanish Government through the project BIA2015-68623-R (Ministerio de Economía y Competitividad, MINECO and European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Lana.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serra, C., Lana, X., Martínez, M.D. et al. Air temperature in Barcelona metropolitan region from MODIS satellite and GIS data. Theor Appl Climatol 139, 473–492 (2020). https://doi.org/10.1007/s00704-019-02973-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-019-02973-y

Navigation