Skip to main content

Advertisement

Log in

Phylogeographic study revealed microrefugia for an endemic species on the Qinghai–Tibetan Plateau: Rhodiola chrysanthemifolia (Crassulaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Most phylogeographic studies on the Qinghai–Tibetan Plateau and in adjacent regions have focused on tree or shrub species, or on herbaceous species that mainly inhabit alpine meadows or grasslands. The phylogeography of herbaceous species that inhabit woodlands and shrubberies has been largely neglected. Here we investigate the evolutionary history of a woodland- and shrubbery-inhabited herbaceous species, Rhodiola chrysanthemifolia, which grows in southern Tibet and in the mountains of the Hengduan ecoregion. The cpDNA trnL-F, rpl20-rps12 and nrDNA ITS regions of 183 individuals from 13 populations were sequenced. The ITS dataset revealed a significant phylogeographic structure across the distribution range of R. chrysanthemifolia, while the cpDNA dataset showed no significant structure. Besides, analyses of molecular variance showed that among-population variation was described as 96.27 % of the total variation for ITS marker, much higher than that for cpDNA (63.68 %). Limited seed migration among populations together with inbreeding within populations of R. chsysanthemifolia may result in the different phylogeographic and genetic patterns for ITS and cpDNA markers in this species. A high frequency and an even distribution of private cpDNA haplotypes were discovered throughout the distribution range of R. chrysanthemifolia; ITS genotypes formed three main lineages which showed a geographical distribution pattern. Furthermore, populations with above-average gene diversity were evenly spread across the current distribution range of R. chrysanthemifolia, supporting the existence of microrefugia for this species during Last Glacial Maximum, even earlier glaciations, similar to the pattern of sympatric tree and shrub species of the Juniperus tibetica complex and Hippophae tibetana. Allopatric divergence of populations in isolated microrefugia could be responsible for large number of private cpDNA haplotypes across the current distribution range of R. chrysanthemifolia. The putative factors which drove diversification between R. chrysanthemifolia and R. alsia were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molec Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Wu G, Zhang D, Gao Q, Duan Y, Zhang F, Chen S (2008) Potential refugium on the Qinghai–Tibet Plateau revealed by the chloroplast DNA phylogeography of the alpine species Metagentiana striata (Gentianaceae). Bot J Linn Soc 157:125–140

    Article  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem Bull Bot Soc Amer 19:11–15

    Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Molec Ecol 11:2571–2581

    Article  CAS  Google Scholar 

  • Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72:250–259

    Article  Google Scholar 

  • Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Molec Ecol 13:853–864

    Article  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (ver. 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fjeldsa J, Lovett JC (1997) Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. Biodiversity Conservation 6:325–346

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funk DJ, Nosil P, Etges WJ (2006) Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proc Natl Acad Sci USA 103:3209–3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Zhang D, Chen S, Duan Y, Zhang F, Li Y, Chen S (2009) Chloroplast DNA phylogeography of Rhodiola alsia (Crassulaceae) in the Qinghai–Tibet Plateau. Botany 87:1077–1088

    Article  CAS  Google Scholar 

  • Gao Q, Zhang D, Duan Y, Zhang F, Li Y, Fu P, Chen S (2012) Intraspecific divergences of Rhodiola alsia (Crassulaceae) based on plastid DNA and internal transcribed spacer fragments. Bot J Linn Soc 168:204–215

    Article  Google Scholar 

  • Gao QB, Li YH, Gornall RJ, Zhang ZX, Zhang FQ, Xing R, Fu PC, Wang JL, Liu HR, Tian ZZ, Chen SL (2015) Phylogeny and speciation in Saxifraga sect. Ciliatae (Saxifragaceae): evidence from psbA-trnH, trnL-F and ITS sequences. Taxon 64:703–713

    Article  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Statist Sci 7:457–511

    Article  Google Scholar 

  • Grivet D, Petit RJ (2002) Phylogeography of the common ivy (Hedera sp.) in Europe: genetic differentiation through space and time. Molec Ecol 11:1351–1362

    Article  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molec Ecol 8:521–523

    CAS  Google Scholar 

  • Harmon LJ, Melville J, Larson A, Losos JB (2008) The role of geography and ecological opportunity in the diversification of day geckos (Phelsuma). Syst Biol 57:562–573

    Article  CAS  PubMed  Google Scholar 

  • Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biol 66:591–600

    CAS  PubMed  Google Scholar 

  • Harpending HC, Batzer MA, Gurven M, Jorde LB, Rogers AR, Sherry ST (1998) Genetic traces of ancient demography. Proc Natl Acad Sci USA 95:1961–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison TM, Copeland P, Kidd WSF, Yin A (1992) Raising Tibet. Science 255:1663–1670

    Article  CAS  PubMed  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans, Ser B 359:183–195

    Article  CAS  Google Scholar 

  • Jia DR, Abbott RJ, Liu TL, Mao KS, Bartish IV, Liu JQ (2012) Out of the Qinghai–Tibet Plateau: evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophaë rhamnoides (Elaeagnaceae). New Phytol 194:1123–1133

    Article  PubMed  Google Scholar 

  • Kapp P, DeCelles PG, Gehrels GE, Heizier M, Ding L (2007) Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol Soc Amer Bull 119:917–932

    Article  Google Scholar 

  • Knowles LL (2000) Tests of Pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western North America. Evolution 54:1337–1348

    Article  CAS  PubMed  Google Scholar 

  • Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molec Biol Evol 16:750–759

    Article  CAS  Google Scholar 

  • Lehmkuhl F, Owen LA (2005) Late Quaternary glaciation of Tibet and the bordering mountains: a review. Boreas 34:87–100

    Article  Google Scholar 

  • Li JJ, Fang XM, Ma HZ, Zhu JJ, Pan BT, Chen HL (1996) Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic. Sci China D 39:380–390

    Google Scholar 

  • Li L, Abbott RJ, Liu B, Sun Y, Li L, Zou J, Wang X, Miehe G, Liu J (2013) Pliocene intraspecific divergence and Plio-Pleistocene range expansions within Picea likiangensis (Lijiang spruce), a dominant forest tree of the Qinghai–Tibet Plateau. Molec Ecol 22:5237–5255

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Möller M, Provan J, Gao LM, Poudel RC, Li DZ (2013) Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytol 199:1093–1108

    Article  PubMed  Google Scholar 

  • Meng L, Yang R, Abbott RJ, Miehe G, Hu T, Liu J (2007) Mitochondrial and chloroplast phylogeography of Picea crassifolia Kom. (Pinaceae) in the Qinghai–Tibetan Plateau and adjacent highlands. Molec Ecol 16:4128–4137

    Article  CAS  Google Scholar 

  • Mes THM, van Brederode J, t’Hart H (1996) Origion of the woody Macaronesian Sempervivoideae and the phylogenetic position of the east African species of Aeonium. Bot Acta 109:477–481

    Article  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Opgenoorth L, Vendramin GG, Mao K, Miehe G, Miehe S, Liepelt S, Liu J, Ziegenhagen B (2010) Tree endurance on the Tibetan Plateau marks the world’s highest known tree line of the Last Glacial Maximum. New Phytol 185:332–342

    Article  PubMed  Google Scholar 

  • Polzin T, Daneshmand SV (2003) On Steiner trees and minimum spanning trees in hypergraphs. Operations Res Lett 31:12–20

    Article  Google Scholar 

  • Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rambaut A (2009) FigTree version 1.3.1. http://tree.bio.ed.ac.uk/software/figtree

  • Rambaut A, Drummond AJ (2009a) LogCombiner version 1.5.3. http://beast.bio.ed.ac.uk/LogCombiner

  • Rambaut A, Drummond AJ (2009b) TreeAnnotator version 1.5.3. http://beast.bio.ed.ac.uk/TreeAnnotator

  • Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer version 1.6. http://beast.bio.ed.ac.uk/Tracer

  • Ray N, Currat M, Excoffier L (2003) Intra-deme molecular diversity in spatially expanding populations. Molec Biol Evol 20:76–86

    Article  CAS  PubMed  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Molec Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowley DB, Currie BS (2006) Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439:677–681

    Article  CAS  PubMed  Google Scholar 

  • Seong YB, Owen LA, Bishop MP, Bush A, Clendon P, Copland L, Finkel R, Kamp U, Shroder JF (2008) Quaternary glacier history of the Central Karakoram—reply. Quaternary Sci Rev 27:1656–1658

    Article  Google Scholar 

  • Shi YF, Li JJ, Li BY (1998) Uplift and environmental changes of Qinghai–Tibetan Plateau in the late cenozoic. Guangdong Science and Technology Press, Guangzhou

    Google Scholar 

  • Shimono A, Ueno S, Gu S, Zhao X, Tsumura Y, Tang Y (2010) Range shifts of Potentilla fruticosa on the Qinghai–Tibetan Plateau during glacial and interglacial periods revealed by chloroplast DNA sequence variation. Heredity 104:534–542

    Article  CAS  PubMed  Google Scholar 

  • Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Organisms Diversity Evol 12:335–337

    Article  Google Scholar 

  • Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spicer RA, Harris NB, Widdowson M, Herman AB, Guo S, Valdes PJ, Wolfe JA, Kelley SP (2003) Constant elevation of southern Tibet over the past 15 million years. Nature 421:622–624

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing data imputation. Amer J Human Genet 76:449–462

    Article  CAS  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Amer J Human Genet 68:978–989

    Article  CAS  Google Scholar 

  • Sun Y, Wang A, Wan D, Wang Q, Liu J (2012) Rapid radiation of Rheum (Polygonaceae) and parallel evolution of morphological traits. Molec Phylogen Evol 63:150–158

    Article  Google Scholar 

  • Sun Y, Abbott RJ, Li L, Li L, Zou J, Liu J (2014) Evolutionary history of Purple cone spruce (Picea Purpurea) in the Qinghai–Tibet Plateau: homoploid hybrid origin and Pleistocene expansion. Molec Ecol 23:343–359

    Article  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (and other methods), version 4.0 Beta. Sinauer, Sunderland

    Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Molec Biol 17:1105–1109

    Article  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA 6: molecular evolutionary genetics analysis version 6.0. Molec Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YJ, Liu JQ (2004) A preliminary investigation on the phylogeny of Saussurea (Asteraceae: Cardueae) based on chloroplast DNA trnL-F sequences. Acta Phytotax Sin 42:136–153

    Google Scholar 

  • Wang A, Yang M, Liu J (2005) Molecular phylogeny, recent radiation and evolution of gross morphology of the Rhubarb genus Rheum (Polygonaceae) inferred from chloroplast DNA trnL-F sequences. Ann Bot (Oxford) 96:489–498

    Article  CAS  Google Scholar 

  • Wang C, Zhao X, Liu Z, Lippert PC, Graham SA, Coe RS, Yi H, Zhu L, Liu S, Li Y (2008) Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA 105:4987–4992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang LY, Ikeda H, Liu TL, Wang YJ, Liu JQ (2009a) Repeated range expansion and glacial endurance of Potentilla glabra (Rosaceae) in the Qinghai–Tibetan Plateau. J Integr Pl Biol 51:698–706

    Article  Google Scholar 

  • Wang L, Abbott RJ, Zheng W, Chen P, Wang Y, Liu J (2009b) History and evolution of alpine plants endemic to the Qinghai–Tibetan Plateau: Aconitum gymnandrum (Ranunculaceae). Molec Ecol 18:709–721

    Article  Google Scholar 

  • Wang H, Laqiong Sun K, Lu F, Wang Y, Song Z, Wu Q, Chen J, Zhang W (2010) Phylogeographic structure of Hippophae tibetana (Elaeagnaceae) highlights the highest microrefugia and the rapid uplift of the Qinghai–Tibetan Plateau. Molec Ecol 19:2964–2979

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CY (1987) Origin and evolution of flora of Xizang. In: Wu CY (ed) Flora Xizangica. Science Press, Beijing

    Google Scholar 

  • Wu SG, Yang YP, Fei Y (1995) On the flora of the alpine region in the Qinghai–Xizang (Tibet) Plateau. Acta Bot Yunnan 17:233–250

    Google Scholar 

  • Xu T, Abbott RJ, Milne RI, Mao K, Du FK, Wu G, Ciren Z, Miehe G, Liu J (2010) Phylogeography and allopatric divergence of cypress species (Cupressus L.) in the Qinghai–Tibetan Plateau and adjacent regions. BMC Evol Biol 10:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang FS, Li YF, Ding X, Wang XQ (2008) Extensive population expansion of Pedicularis longiflora (Orobanchaceae) on the Qinghai–Tibetan Plateau and its correlation with the Quaternary climate change. Molec Ecol 17:5135–5145

    Article  Google Scholar 

  • Zhang D, Fengquan L, Jianmin B (2000) Eco-environmental effects of the Qinghai–Tibet Plateau uplift during the Quaternary in China. Environm Geol 39:1352–1358

    Article  Google Scholar 

  • Zhang Q, Chiang TY, George M, Liu JQ, Abbott RJ (2005) Phylogeography of the Qinghai–Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Molec Ecol 14:3513–3524

    Article  CAS  Google Scholar 

  • Zhang YH, Volis S, Sun H (2010) Chloroplast phylogeny and phylogeography of Stellera chamaejasme on the Qinghai–Tibet Plateau and in adjacent regions. Molec Phylogen Evol 57:1162–1172

    Article  CAS  Google Scholar 

  • Zheng D (1996) The system of physico-geographical regions of the Qinghai–Xizang (Tibet) Plateau. Sci China D 39:410–417

    Google Scholar 

  • Zheng BX, Xu QQ, Shen YP (2002) The relationship between climate change and Quaternary glacial cycles on the Qinghai–Tibetan Plateau: review and speculation. Quaternary Int 97–8:93–101

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (Grant Nos. 31200281, 31270270, 31400322), CAS “Light of West China” Program and Youth Innovation Promotion Association, CAS (Grant No. 2016378).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Long Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Yunpeng Zhao.

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Alignment of 20 concatenated cpDNA (rpl20-rps12+trnL-F) haplotypes plus outgroup.

Online Resource 2. Alignment of 27 ITS haplotypes plus outgroup.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, QB., Zhang, FQ., Xing, R. et al. Phylogeographic study revealed microrefugia for an endemic species on the Qinghai–Tibetan Plateau: Rhodiola chrysanthemifolia (Crassulaceae). Plant Syst Evol 302, 1179–1193 (2016). https://doi.org/10.1007/s00606-016-1324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-016-1324-4

Keywords

Navigation