Skip to main content
Log in

The effects of exercise on oxidative stress (TBARS) and BDNF in severely depressed inpatients

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Exercise can be an effective treatment for depression. Although the efficacy of exercise is well established, little is known concerning the biological changes associated with the antidepressant effects of exercise. A randomized, controlled trial was conducted to evaluate the effects of adding exercise to the usual treatment on the thiobarbituric acid-reactive substances (TBARS) and brain-derived neurotrophic factor (BDNF) serum levels of severely depressed inpatients. Twenty-six participants were randomized to an exercise group (n = 15, exercise + treatment as usual) or a control group (n = 11, treatment as usual). The participants in the exercise group completed a targeted dose of 16.5 kcal/kg/week of aerobic exercise, three times per week, throughout their hospitalizations. The control group did not exercise during their hospitalizations. The mean hospitalization length was of 21.63 (4.5) × 23.82 (5.7) days for exercise and control groups, respectively. The exercise group performed a median of nine sessions. After adjusting for previous tobacco use, a significant group × time interaction was found for TBARS serum levels (p = 0.02). A post hoc Bonferroni test revealed differences between the exercise and control groups at discharge. A significant time effect (p < 0.001) but no group × time interaction was found (p = 0.13) for BDNF serum levels. Adding exercise to the usual treatment of severely depressed inpatients decreases the TBARS serum levels of severely depressed inpatients after 3 weeks. Adding exercise had no additional effects on BDNF serum levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andrade L, Caraveo-Anduaga JJ, Berglund P, Bijl RV, De Graaf R, Vollebergh W, Dragomirecka E, Kohn R, Keller M, Kessler RC, Kawakami N, Kilic C, Offord D, Ustun TB, Wittchen HU (2003) The epidemiology of major depressive episodes: results from the International Consortium of Psychiatric Epidemiology (ICPE) Surveys. Int J Methods Psychiatr Res 12(1):3–21

    Article  PubMed  Google Scholar 

  2. Prince M, Patel V, Saxena S, Maj M, Maselko J, Phillips MR, Rahman A (2007) No health without mental health. Lancet 370(9590):859–877

    Article  PubMed  Google Scholar 

  3. Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35(3):676–692

    Article  PubMed  CAS  Google Scholar 

  4. Maletic V, Robinson M, Oakes T, Iyengar S, Ball SG, Russell J (2007) Neurobiology of depression: an integrated view of key findings. Int J Clin Pract 61(12):2030–2040

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Ng F, Berk M, Dean O, Bush AI (2008) Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 11(6):851–876

    Article  PubMed  CAS  Google Scholar 

  6. Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S (2007) Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol 22(2):67–73

    Article  PubMed  CAS  Google Scholar 

  7. Stefanescu C, Ciobica A (2012) The relevance of oxidative stress status in first episode and recurrent depression. J Affect Disord 143(1–3):34–38

    Google Scholar 

  8. Sheline YI (1996) Hippocampal atrophy in major depression: a result of depression-induced neurotoxicity? Mol Psychiatry 1(4):298–299

    PubMed  CAS  Google Scholar 

  9. Molendijk ML, Bus BAA, Spinhoven P, Penninx BWJH, Kenis G, Prickaerts J, Voshaar RCO, Elzinga BM (2011) Serum levels of brain-derived neurotrophic factor in major depressive disorder: state–trait issues, clinical features and pharmacological treatment. Mol Psychiatry 16(11):1088–1095

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Kapczinski F, Frey BN, Andreazza AC, Kauer-Sant’Anna M, Cunha AB, Post RM (2008) Increased oxidative stress as a mechanism for decreased BDNF levels in acute manic episodes. Rev Bras Psiquiatr 30(3):243–245

    Article  PubMed  Google Scholar 

  11. Rethorst CD, Wipfli BM, Landers DM (2009) The antidepressive effects of exercise: a meta-analysis of randomized trials. Sports Med 39(6):491–511

    Article  PubMed  Google Scholar 

  12. Daley A (2008) Exercise and depression: a review of reviews. J Clin Psychol Med Settings 15(2):140–147

    Article  PubMed  Google Scholar 

  13. Georgia S, Mark BP, Angela CB, Jasper AJS, Michael WO (2006) Exercise interventions for mental health: a quantitative and qualitative review. Clin Psychol Sci Pract 13(2):179–193

    Article  Google Scholar 

  14. Rimer J, Dwan K, Lawlor DA, Greig CA, McMurdo M, Morley W, Mead GE (2012) Exercise for depression. Cochrane Database Syst Rev 7:CD004366

    PubMed  Google Scholar 

  15. Schuch FB, de Almeida Fleck MP (2013) Is exercise an efficacious treatment for depression? A comment upon recent negative findings. Front Psychiatry 4:20

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gomez-Cabrera MC, Domenech E, Vina J (2008) Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med 44(2):126–131

    Article  PubMed  CAS  Google Scholar 

  17. Gomez-Cabrera MC, Martinez A, Santangelo G, Pallardo FV, Sastre J, Vina J (2006) Oxidative stress in marathon runners: interest of antioxidant supplementation. Br J Nutr 96(Suppl 1):S31–S33

    Article  PubMed  CAS  Google Scholar 

  18. Radak Z, Chung HY, Goto S (2008) Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med 44(2):153–159

    Article  PubMed  CAS  Google Scholar 

  19. Radak Z, Chung HY, Koltai E, Taylor AW, Goto S (2008) Exercise, oxidative stress and hormesis. Ageing Res Rev 7(1):34–42

    Article  PubMed  CAS  Google Scholar 

  20. Radak Z, Taylor AW, Ohno H, Goto S (2001) Adaptation to exercise-induced oxidative stress: from muscle to brain. Exerc Immunol Rev 7:90–107

    PubMed  CAS  Google Scholar 

  21. Ferris LT, Williams JS, Shen CL (2007) The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc 39(4):728–734

    Article  PubMed  CAS  Google Scholar 

  22. Knaepen K, Goekint M, Heyman EM, Meeusen R (2010) Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med 40(9):765–801

    Article  PubMed  Google Scholar 

  23. Ernst C, Olson AK, Pinel JP, Lam RW, Christie BR (2006) Antidepressant effects of exercise: evidence for an adult-neurogenesis hypothesis? J Psychiatry Neurosci 31(2):84–92

    PubMed  PubMed Central  Google Scholar 

  24. Lucassen PJ, Meerlo P, Naylor AS, van Dam AM, Dayer AG, Fuchs E, Oomen CA, Czeh B (2010) Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: implications for depression and antidepressant action. Eur Neuropsychopharmacol 20(1):1–17

    Article  PubMed  CAS  Google Scholar 

  25. Gustafsson G, Lira CM, Johansson J, Wisen A, Wohlfart B, Ekman R, Westrin A (2009) The acute response of plasma brain-derived neurotrophic factor as a result of exercise in major depressive disorder. Psychiatry Res 169(3):244–248

    Article  PubMed  CAS  Google Scholar 

  26. Laske C, Banschbach S, Stransky E, Bosch S, Straten G, Machann J, Fritsche A, Hipp A, Niess A, Eschweiler GW (2010) Exercise-induced normalization of decreased BDNF serum concentration in elderly women with remitted major depression. Int J Neuropsychopharmacol 13(5):595–602

    Article  PubMed  CAS  Google Scholar 

  27. Toups MS, Greer TL, Kurian BT, Grannemann BD, Carmody TJ, Huebinger R, Rethorst C, Trivedi MH (2011) Effects of serum brain derived neurotrophic factor on exercise augmentation treatment of depression. J Psychiatr Res 45(10):1301–1306

    Article  PubMed  Google Scholar 

  28. Schuch FB, Vasconcelos-Moreno MP, Borowsky C, Fleck MP (2011) Exercise and severe depression: preliminary results of an add-on study. J Affect Disord 133(3):615–618

    Article  PubMed  CAS  Google Scholar 

  29. Hamilton M (1967) Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol 6(4):278–296

    Article  PubMed  CAS  Google Scholar 

  30. Shephard RJ (1988) PAR-Q, Canadian home fitness test and exercise screening alternatives. Sports Med 5(3):185–195

    Article  PubMed  CAS  Google Scholar 

  31. Trivedi MH, Greer TL, Grannemann BD, Chambliss HO, Jordan AN (2006) Exercise as an augmentation strategy for treatment of major depression. J Psychiatr Pract 12(4):205–213

    Article  PubMed  Google Scholar 

  32. Trivedi MH, Greer TL, Grannemann BD, Church TS, Galper DI, Sunderajan P, Wisniewski SR, Chambliss HO, Jordan AN, Finley C, Carmody TI (2006) TREAD: TReatment with Exercise Augmentation for Depression: study rationale and design. Clin Trials 3(3):291–305

    Article  PubMed  Google Scholar 

  33. Tanaka H, Monahan KD, Seals DR (2001) Age-predicted maximal heart rate revisited. J Am Coll Cardiol 37(1):153–156

    Article  PubMed  CAS  Google Scholar 

  34. Keytel LR, Goedecke JH, Noakes TD, Hiiloskorpi H, Laukkanen R, van der Merwe L, Lambert EV (2005) Prediction of energy expenditure from heart rate monitoring during submaximal exercise. J Sports Sci 23(3):289–297

    Article  PubMed  CAS  Google Scholar 

  35. Karvonen J, Vuorimaa T (1988) Heart rate and exercise intensity during sports activities. Practical application. Sports Med 5(5):303–311

    Article  PubMed  CAS  Google Scholar 

  36. Ebbeling CB, Ward A, Puleo EM, Widrick J, Rippe JM (1991) Development of a single-stage submaximal treadmill walking test. Med Sci Sports Exerc 23(8):966–973

    Article  PubMed  CAS  Google Scholar 

  37. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, vol 323, 4th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  38. Bollini P, Pampallona S, Tibaldi G, Kupelnick B, Munizza C (1999) Effectiveness of antidepressants. Meta-analysis of dose–effect relationships in randomised clinical trials. Br J Psychiatry 174:297–303

    Article  PubMed  CAS  Google Scholar 

  39. Magalhaes PV, Jansen K, Pinheiro RT, Colpo GD, da Motta LL, Klamt F, da Silva RA, Kapczinski F (2012) Peripheral oxidative damage in early-stage mood disorders: a nested population-based case–control study. Int J Neuropsychopharmacol 15(8):1043–1050

    Article  PubMed  CAS  Google Scholar 

  40. Menegali BT, Nesi RT, Souza PS, Silva LA, Silveira PC, Valenca SS, Pinho RA (2009) The effects of physical exercise on the cigarette smoke-induced pulmonary oxidative response. Pulm Pharmacol Ther 22(6):567–573

    Article  PubMed  CAS  Google Scholar 

  41. Xu X, Zhao W, Wan W, Ji LL, Powers AS, Erikson JM, Zhang JQ (2010) Exercise training combined with angiotensin II receptor blockade reduces oxidative stress after myocardial infarction in rats. Exp Physiol 95(10):1008–1015

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Mazzola PN, Terra M, Rosa AP, Mescka CP, Moraes TB, Piccoli B, Jacques CE, Dalazen G, Cortes MX, Coelho J, Dutra-Filho CS (2011) Regular exercise prevents oxidative stress in the brain of hyperphenylalaninemic rats. Metab Brain Dis 26(4):291–297

    Article  PubMed  CAS  Google Scholar 

  43. Nemoto K, Itoh M, Nakamura H, Oh-Ishi S (2012) Effect of exercise therapy on reactive oxygen species and reactive nitrogen species in COPD patients. J Tokyo Med Univ 70(1):34–41

    Google Scholar 

  44. Bogdanis GC, Stavrinou P, Fatouros IG, Philippou A, Chatzinikolaou A, Draganidis D, Ermidis G, Maridaki M (2013) Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem Toxicol 61:171–177

    Article  PubMed  CAS  Google Scholar 

  45. Toledo AC, Magalhaes RM, Hizume DC, Vieira RP, Biselli PJ, Moriya HT, Mauad T, Lopes FD, Martins MA (2012) Aerobic exercise attenuates pulmonary injury induced by exposure to cigarette smoke. Eur Respir J 39(2):254–264

    Article  PubMed  CAS  Google Scholar 

  46. Luchese C, Brandao R, de Oliveira R, Nogueira CW, Santos FW (2007) Efficacy of diphenyl diselenide against cerebral and pulmonary damage induced by cadmium in mice. Toxicol Lett 173(3):181–190

    Article  PubMed  CAS  Google Scholar 

  47. Goekint M, Roelands B, Heyman E, Njemini R, Meeusen R (2011) Influence of citalopram and environmental temperature on exercise-induced changes in BDNF. Neurosci Lett 494(2):150–154

    Article  PubMed  CAS  Google Scholar 

  48. Bos I, Jacobs L, Nawrot TS, de Geus B, Torfs R, Int Panis L, Degraeuwe B, Meeusen R (2011) No exercise-induced increase in serum BDNF after cycling near a major traffic road. Neurosci Lett 500(2):129–132

    Article  PubMed  CAS  Google Scholar 

  49. Mata J, Thompson RJ, Gotlib IH (2010) BDNF genotype moderates the relation between physical activity and depressive symptoms. Health Psychol 29(2):130–133

    Article  PubMed  PubMed Central  Google Scholar 

  50. Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E (2011) Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 9(4):530–552

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Meagher EA, FitzGerald GA (2000) Indices of lipid peroxidation in vivo: strengths and limitations. Free Radic Biol Med 28(12):1745–1750

    Article  PubMed  CAS  Google Scholar 

  52. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Flavio Kapczinski and the Molecular Psychiatry Laboratory of the Hospital de Clínicas de Porto Alegre for his molecular analyses. We also thank the psychiatric inpatient unit of the Hospital de Clínicas de Porto Alegre. We are grateful to the Grupo de Pesquisa e Pós-Graduação (GPPG) of the Hospital de Clínicas de Porto Alegre for the statistical analyses and funding of this study. This study was funded by grants from Fundo de Incentivo a Pesquisa e Eventos do Hospital de Clinicas de Porto Alegre (FIPE-HCPA) and Coordenação de aperfeiçoamento de pessoal de Nível Superior (CAPES).

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Barreto Schuch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuch, F.B., Vasconcelos-Moreno, M.P., Borowsky, C. et al. The effects of exercise on oxidative stress (TBARS) and BDNF in severely depressed inpatients. Eur Arch Psychiatry Clin Neurosci 264, 605–613 (2014). https://doi.org/10.1007/s00406-014-0489-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-014-0489-5

Keywords

Navigation