Skip to main content

Advertisement

Log in

CD34-based enrichment of genetically engineered human T cells for clinical use results in dramatically enhanced tumor targeting

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Objective clinical responses can be achieved in melanoma patients by infusion of T cell receptor (TCR) gene transduced T cells. Although promising, the therapy is still largely ineffective, as most patients did not benefit from treatment. That only a minority of the infused T cells were genetically modified and that these were extensively expanded ex vivo may have prevented their efficacy. We developed novel and generally applicable retroviral vectors that allow rapid and efficient selection of T cells transduced with human TCRs. These vectors encode two TCR chains and a truncated CD34 molecule (CD34t) in a single mRNA transcript. Transduced T cells were characterized and the effects of CD34-based enrichment of redirected T cells were evaluated. Both CD8+ and CD4+ T cells could be transduced and efficiently co-expressed all introduced transgenes on their surface. Importantly, more than fivefold enrichment of both the frequency of transduced cells and the specific anti-tumor reactivity of the effector population could be achieved by magnetic beads-based enrichment procedures readily available for clinical grade hematopoietic stem cell isolation. This CD34-based enrichment technology will improve the feasibility of adoptive transfer of clinically relevant effectors. In addition to their enhanced tumor recognition, the enriched redirected T cells may also show superior reactivity and persistence in vivo due to the high purity of transduced cells and the shortened ex vivo culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CTL:

Cytolytic T lymphocytes

PBMC:

Peripheral blood mononuclear cells

TCR:

T cell receptor

IFN:

Interferon

FACS:

Fluorescence-activated cell sorting

ELISA:

Enzyme-linked immunosorbent assay

References

  1. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26:5233–5239

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev 8:299–308

    CAS  Google Scholar 

  3. Rosenberg SA, Dudley ME (2009) Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 21:233–240

    Article  CAS  PubMed  Google Scholar 

  4. Clay TM, Custer MC, Sachs J, Hwu P, Rosenberg SA, Nishimura MI (1999) Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J Immunol 163:507–513

    CAS  PubMed  Google Scholar 

  5. Orentas RJ, Roskopf SJ, Nolan GP, Nishimura MI (2001) Retroviral transduction of a T cell receptor specific for an Epstein-Barr virus-encoded peptide. Clin Immunol (Orlando, Fla) 98:220–228

    Article  CAS  Google Scholar 

  6. Roszkowski JJ, Lyons GE, Kast WM, Yee C, Van Besien K, Nishimura MI (2005) Simultaneous generation of CD8+ and CD4+ melanoma-reactive T cells by retroviral-mediated transfer of a single T-cell receptor. Cancer Res 65:1570–1576

    Article  CAS  PubMed  Google Scholar 

  7. Callender GG, Rosen HR, Roszkowski JJ, Lyons GE, Li M, Moore T, Brasic N, McKee MD, Nishimura MI (2006) Identification of a hepatitis C virus-reactive T cell receptor that does not require CD8 for target cell recognition. Hepatology 43:973–981

    Article  CAS  PubMed  Google Scholar 

  8. Duval L, Schmidt H, Kaltoft K, Fode K, Jensen JJ, Sorensen SM, Nishimura MI, von der Maase H (2006) Adoptive transfer of allogeneic cytotoxic T lymphocytes equipped with a HLA-A2 restricted MART-1 T-cell receptor: a phase I trial in metastatic melanoma. Clin Cancer Res 12:1229–1236

    Article  CAS  PubMed  Google Scholar 

  9. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science (New York, NY) 314:126–129

    CAS  Google Scholar 

  10. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich JR, Lee CC, Restifo NP, Schwarz SL, Cogdill AP, Bishop RJ, Kim H, Brewer CC, Rudy SF, VanWaes C, Davis JL, Mathur A, Ripley RT, Nathan DA, Laurencot CM, Rosenberg SA (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546

    Article  CAS  PubMed  Google Scholar 

  11. Abad JD, Wrzensinski C, Overwijk W, De Witte MA, Jorritsma A, Hsu C, Gattinoni L, Cohen CJ, Paulos CM, Palmer DC, Haanen JB, Schumacher TN, Rosenberg SA, Restifo NP, Morgan RA (2008) T-cell receptor gene therapy of established tumors in a murine melanoma model. J Immunother 31:1–6

    Article  CAS  PubMed  Google Scholar 

  12. de Witte MA, Jorritsma A, Kaiser A, van den Boom MD, Dokter M, Bendle GM, Haanen JB, Schumacher TN (2008) Requirements for effective antitumor responses of TCR transduced T cells. J Immunol 181:5128–5136

    PubMed  Google Scholar 

  13. Schwartzentruber DJ, Hom SS, Dadmarz R, White DE, Yannelli JR, Steinberg SM, Rosenberg SA, Topalian SL (1994) In vitro predictors of therapeutic response in melanoma patients receiving tumor-infiltrating lymphocytes and interleukin-2. J Clin Oncol 12:1475–1483

    CAS  PubMed  Google Scholar 

  14. Riddell SR, Elliott M, Lewinsohn DA, Gilbert MJ, Wilson L, Manley SA, Lupton SD, Overell RW, Reynolds TC, Corey L, Greenberg PD (1996) T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat Med 2:216–223

    Article  CAS  PubMed  Google Scholar 

  15. Morris JC, Conerly M, Thomasson B, Storek J, Riddell SR, Kiem HP (2004) Induction of cytotoxic T-lymphocyte responses to enhanced green and yellow fluorescent proteins after myeloablative conditioning. Blood 103:492–499

    Article  CAS  PubMed  Google Scholar 

  16. Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, Zhou J, Huang J, Powell DJ Jr, Rosenberg SA (2004) Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol 173:7125–7130

    CAS  PubMed  Google Scholar 

  17. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22:589–594

    Article  CAS  PubMed  Google Scholar 

  18. Roszkowski JJ, Yu DC, Rubinstein MP, McKee MD, Cole DJ, Nishimura MI (2003) CD8-independent tumor cell recognition is a property of the T cell receptor and not the T cell. J Immunol 170:2582–2589

    CAS  PubMed  Google Scholar 

  19. Rivoltini L, Barracchini KC, Viggiano V, Kawakami Y, Smith A, Mixon A, Restifo NP, Topalian SL, Simonis TB, Rosenberg SA et al (1995) Quantitative correlation between HLA class I allele expression and recognition of melanoma cells by antigen-specific cytotoxic T lymphocytes. Cancer Res 55:3149–3157

    CAS  PubMed  Google Scholar 

  20. Neurauter AA, Bonyhadi M, Lien E, Nokleby L, Ruud E, Camacho S, Aarvak T (2007) Cell isolation and expansion using Dynabeads. Adv Biochem Eng Biotechnol 106:41–73

    CAS  PubMed  Google Scholar 

  21. Zhou J, Shen X, Huang J, Hodes RJ, Rosenberg SA, Robbins PF (2005) Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol 175:7046–7052

    CAS  PubMed  Google Scholar 

  22. Shen X, Zhou J, Hathcock KS, Robbins P, Powell DJ Jr, Rosenberg SA, Hodes RJ (2007) Persistence of tumor infiltrating lymphocytes in adoptive immunotherapy correlates with telomere length. J Immunother 30:123–129

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Press OW, Lindgren CG, Greenberg P, Riddell S, Qian X, Laugen C, Raubitschek A, Forman SJ, Jensen MC (2004) Cellular immunotherapy for follicular lymphoma using genetically modified CD20-specific CD8+ cytotoxic T lymphocytes. Mol Ther 9:577–586

    Article  CAS  PubMed  Google Scholar 

  24. Kabelitz D, Janssen O (1997) Antigen-induced death of T-lymphocytes. Front Biosci 2:d61–d77

    CAS  PubMed  Google Scholar 

  25. de Wynter EA, Ryder D, Lanza F, Nadali G, Johnsen H, Denning-Kendall P, Thing-Mortensen B, Silvestri F, Testa NG (1999) Multicentre European study comparing selection techniques for the isolation of CD34+ cells. Bone Marrow Transplant 23:1191–1196

    Article  PubMed  Google Scholar 

  26. Jing Y, Moore LR, Williams PS, Chalmers JJ, Farag SS, Bolwell B, Zborowski M (2007) Blood progenitor cell separation from clinical leukapheresis product by magnetic nanoparticle binding and magnetophoresis. Biotechnol Bioeng 96:1139–1154

    Article  CAS  PubMed  Google Scholar 

  27. Fehse B, Richters A, Putimtseva-Scharf K, Klump H, Li Z, Ostertag W, Zander AR, Baum C (2000) CD34 splice variant: an attractive marker for selection of gene-modified cells. Mol Ther 1:448–456

    Article  CAS  PubMed  Google Scholar 

  28. Rettig MP, Ritchey JK, Meyerrose TE, Haug JS, DiPersio JF (2003) Transduction and selection of human T cells with novel CD34/thymidine kinase chimeric suicide genes for the treatment of graft-versus-host disease. Mol Ther 8:29–41

    Article  CAS  PubMed  Google Scholar 

  29. Sangiolo D, Lesnikova M, Nash RA, Jensen MC, Nikitine A, Kiem HP, Georges GE (2007) Lentiviral vector conferring resistance to mycophenolate mofetil and sensitivity to ganciclovir for in vivo T-cell selection. Gene Ther 14:1549–1554

    Article  CAS  PubMed  Google Scholar 

  30. Bennour E, Ferrand C, Remy-Martin JP, Certoux JM, Gorke S, Qasim W, Gaspar HB, Baumert T, Duperrier A, Deschamps M, Fehse B, Tiberghien P, Robinet E (2008) Abnormal expression of only the CD34 part of a transgenic CD34/herpes simplex virus-thymidine kinase fusion protein is associated with ganciclovir resistance. Hum Gene Ther 19:699–709

    Article  CAS  PubMed  Google Scholar 

  31. Heemskerk MH, Hagedoorn RS, van der Hoorn MA, van der Veken LT, Hoogeboom M, Kester MG, Willemze R, Falkenburg JH (2007) Efficiency of T-cell receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR-CD3 complex. Blood 109:235–243

    Article  CAS  PubMed  Google Scholar 

  32. Scholten KB, Kramer D, Kueter EW, Graf M, Schoedl T, Meijer CJ, Schreurs MW, Hooijberg E (2006) Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin Immunol (Orlando, Fla) 119:135–145

    Article  CAS  Google Scholar 

  33. Jorritsma A, Gomez-Eerland R, Dokter M, van de Kasteele W, Zoet YM, Doxiadis II, Rufer N, Romero P, Morgan RA, Schumacher TN, Haanen JB (2007) Selecting highly affine and well-expressed TCRs for gene therapy of melanoma. Blood 110:3564–3572

    Article  CAS  PubMed  Google Scholar 

  34. Kuball J, Dossett ML, Wolfl M, Ho WY, Voss RH, Fowler C, Greenberg PD (2007) Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 109:2331–2338

    Article  CAS  PubMed  Google Scholar 

  35. Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA (2006) Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res 66:8878–8886

    Article  CAS  PubMed  Google Scholar 

  36. Kuball J, Hauptrock B, Malina V, Antunes E, Voss RH, Wolfl M, Strong R, Theobald M, Greenberg PD (2009) Increasing functional avidity of TCR-redirected T cells by removing defined N-glycosylation sites in the TCR constant domain. J Exp Med 206:463–475

    Article  CAS  PubMed  Google Scholar 

  37. Dudley ME, Wunderlich J, Nishimura MI, Yu D, Yang JC, Topalian SL, Schwartzentruber DJ, Hwu P, Marincola FM, Sherry R, Leitman SF, Rosenberg SA (2001) Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 24:363–373

    Article  CAS  PubMed  Google Scholar 

  38. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  CAS  PubMed  Google Scholar 

  39. Lefrancois L, Marzo AL (2006) The descent of memory T-cell subsets. Nat Rev Immunol 6:618–623

    Article  CAS  PubMed  Google Scholar 

  40. Huang J, Kerstann KW, Ahmadzadeh M, Li YF, El-Gamil M, Rosenberg SA, Robbins PF (2006) Modulation by IL-2 of CD70 and CD27 expression on CD8 + T cells: importance for the therapeutic effectiveness of cell transfer immunotherapy. J Immunol 176:7726–7735

    CAS  PubMed  Google Scholar 

  41. Tran KQ, Zhou J, Durflinger KH, Langhan MM, Shelton TE, Wunderlich JR, Robbins PF, Rosenberg SA, Dudley ME (2008) Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J Immunother 31:742–751

    Article  CAS  PubMed  Google Scholar 

  42. Boni A, Muranski P, Cassard L, Wrzesinski C, Paulos CM, Palmer DC, Gattinoni L, Hinrichs CS, Chan CC, Rosenberg SA, Restifo NP (2008) Adoptive transfer of allogeneic tumor-specific T cells mediates effective regression of large tumors across major histocompatibility barriers. Blood 112:4746–4754

    Article  CAS  PubMed  Google Scholar 

  43. Diaz-Montero CM, El Naggar S, Al Khami A, El Naggar R, Montero AJ, Cole DJ, Salem ML (2008) Priming of naive CD8+ T cells in the presence of IL-12 selectively enhances the survival of CD8+ CD62Lhi cells and results in superior anti-tumor activity in a tolerogenic murine model. Cancer Immunol Immunother 57:563–572

    Article  CAS  PubMed  Google Scholar 

  44. Zhao Y, Parkhurst MR, Zheng Z, Cohen CJ, Riley JP, Gattinoni L, Restifo NP, Rosenberg SA, Morgan RA (2007) Extrathymic generation of tumor-specific T cells from genetically engineered human hematopoietic stem cells via Notch signaling. Cancer Res 67:2425–2429

    Article  CAS  PubMed  Google Scholar 

  45. Newrzela S, Cornils K, Li Z, Baum C, Brugman MH, Hartmann M, Meyer J, Hartmann S, Hansmann ML, Fehse B, von Laer D (2008) Resistance of mature T cells to oncogene transformation. Blood 112:2278–2286

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by Abney Foundation postdoctoral scholarship (HN), NIH Grant R01CA104947 (MIN), laboratory start-up funds and American Cancer Society Institutional Research Grant 97-219-08 (YZ) and RBC Research Scholars Program (AT). The authors are also grateful to the MUSC Center for Cellular Therapy for their invaluable support. The Center for Cellular Therapy is supported in part by the Clinical and Translational Science Award support grant (UL 1 RR029882) and the Hollings Cancer Center. We thank Georgiana Onicescu for providing biostatistics expertise and Dr. Toshio Kitamura for providing PlatA cells. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Håkan Norell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norell, H., Zhang, Y., McCracken, J. et al. CD34-based enrichment of genetically engineered human T cells for clinical use results in dramatically enhanced tumor targeting. Cancer Immunol Immunother 59, 851–862 (2010). https://doi.org/10.1007/s00262-009-0810-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0810-8

Keywords

Navigation