Skip to main content
Log in

Lipid accumulation in prokaryotic microorganisms from arid habitats

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 03 February 2020

This article has been updated

Abstract

This review shall provide support for the suitability of arid environments as preferred location to search for unknown lipid-accumulative bacteria. Bacterial lipids are attracting more and more attention as sustainable replacement for mineral oil in fuel and plastic production. The development of prokaryotic microorganisms in arid desert habitats is affected by its harsh living conditions. Drought, nutrient limitation, strong radiation, and extreme temperatures necessitate effective adaption mechanisms. Accumulation of storage lipids as energy reserve and source of metabolic water represents a common adaption in desert animals and presumably in desert bacteria and archaea as well. Comparison of corresponding literature resulted in several bacterial species from desert habitats, which had already been described as lipid-accumulative elsewhere. Based on the gathered information, literature on microbial communities in hot desert, cold desert, and humid soil were analyzed on its content of lipid-accumulative bacteria. With more than 50% of the total community size in single studies, hot deserts appear to be more favorable for lipid-accumulative species then humid soil (≤20%) and cold deserts (≤17%). Low bacterial lipid accumulation in cold deserts is assumed to result from the influence of low temperatures on fatty acids and the increased necessity of permanent adaption methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  • Abdel-Ghaffar AS (1989) Aspects of microbial activities and dinitrogen fixation in Egyptian desert soils. Arid Soil Res Rehabil 3:281–294

    Article  Google Scholar 

  • Agrawal T, Kotasthane AS, Kushwah R (2014) Genotypic and phenotypic diversity of polyhydroxybutyrate (PHB) producing Pseudomonas putida isolates of Chhattisgarh region and assessment of its phosphate solubilizing ability. Biotech 5:45–60

    Google Scholar 

  • Ahlers F (2015) Lexikon der Zusatzstoffe. Hamburger Lebensmittelstiftung - Deutsches Zusatzstoff Museum. http//:www.zusatzstoffmuseum.de. Accessed 16 September 2016

  • Ahmad ZI, Alden JR, Montague MD (1980) The occurrence of trehalose in Micrococcus species. J Gen Microbiol 121:483–486

    CAS  Google Scholar 

  • Aislabie JM, Chhour KL, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacteria in soils of marble point and Wright Valley, Victoria land, Antarctica. Soil Biol Biochem 38:3041–3056

    Article  CAS  Google Scholar 

  • Aislabie JM, Jordan S, Barker GM (2008) Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144:9–20

    Article  CAS  Google Scholar 

  • Al-Awadhi H, Al-Mailem D, Dashti N, Khanafer M, Radwan S (2012) Indigenous hydrocarbon-utilizing bacterioflora in oil-polluted habitats in Kuwait, two decades after the greatest man-made oil spill. Arch Microbiol 194:689–705

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque L, da Costa M (2014) The family Rubrobacteraceae. In: Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin Heidelberg, pp 861–866

    Google Scholar 

  • Alvarez HM (2003) Relationship between β-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int Biodeterior Biodegradation 52:35–42

    Article  CAS  Google Scholar 

  • Alvarez HM (2006) Bacterial triacylglycerols. In: Welson LW (ed) Triglycerides and cholesterol research. Nova Science Publishers, Argentina, pp 159–176

    Google Scholar 

  • Alvarez HM (2010) Biotechnological production and significance of triacylglycerols and wax esters. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, 1st edn. Springer, Berlin Heidelberg, pp 2995–3002

    Chapter  Google Scholar 

  • Alvarez H, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM, Kalscheuer R, Steinbüchel A (1997) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett-Lipid 99:239–246

    Article  CAS  Google Scholar 

  • Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Reichelt R, Keller U, Malkus U, Rasch C, Maskow T, Mayer F, Steinbüchel A (2004) Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. FEMS Microbiol Ecol 50:75–86

    Article  CAS  PubMed  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Annous BA, Becker LA, Bayles DO, Labeda DP, Wilkinson BJ (1997) Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 63:3887–3894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bacchin P, Robertiello A, Viglia A (1974) Identification of n-decane oxidation products in Corynebacterium cultures by combined gas chromatography-mass spectrometry. Appl Microbiol 28:737–741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin E (1964) An introduction to comparative biochemistry, 4th edn. Univ. Press Cambridge, Cambridge, p 52

    Google Scholar 

  • Benardini JN, Sawyer J, Venkateswaran K, Nicholson WL (2003) Spore UV and acceleration resistance of endolithic Bacillus pumilus and Bacillus subtilis isolates obtained from Sonoran desert basalt: implications for lithopanspermia. Astrobiology 3:709–717

    Article  PubMed  Google Scholar 

  • Bequer Urbano S, Albarracin VH, Ordoñez OF, Farias ME, Alvarez HM (2013) Lipid storage in high-altitude Andean lakes extremophiles and its mobilization under stress conditions in Rhodococcus sp. A5, a UV-resistant actinobacterium. Extremophiles 17:217–227

    Article  CAS  PubMed  Google Scholar 

  • Bequer Urbano S, Capua C, Cortez N, Farias ME, Alvarez HM (2014) Triacylglycerol accumulation and oxidative stress in Rhodococcus species: differential effects of pro-oxidants on lipid metabolism. Extremophiles 18:375–384

    Article  CAS  Google Scholar 

  • Billi D, Caiola MG (1996) Effects of nitrogen limitation and starvation on Chroococcidiopsis sp. (Chroococcales). New Phytol 133:563–571

    Article  CAS  Google Scholar 

  • Billi D, Potts M (2000) Life without water: responses of prokaryotes to desiccation. In: Storey KB, Storey J (eds) Environmental stressors and gene responses. Elsevier Science BV, Blackburg, pp 181–192

    Chapter  Google Scholar 

  • Boulter JI, Trevors JT, Boland GJ (2002) Microbial studies of compost: bacterial identification, and their potential for turfgrass pathogen suppression. World J Microbiol Biotechnol 18:661–671

    Article  CAS  Google Scholar 

  • Boyandin AN, Prudnikova SV, Karpov VA, Ivonin VN, Đỗ NL, Nguyễn TH, Lê TMH, Filichev NL, Levin AL, Filipenko ML, Volova TG, Gitelson II (2013) Microbial degradation of polyhydroxyalkanoates in tropical soils. Int Biodeterior Biodegradation 83:77–84

    Article  CAS  Google Scholar 

  • Brambilla E, Hippe H, Hagelstein A, Tindall BJ, Stackebrandt E (2001) 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo dry valleys, Antarctica. Extremophiles 5:23–33

    Article  CAS  PubMed  Google Scholar 

  • Bursy J, Kuhlmann AU, Pittelkow M, Hartmann H, Jebbar M, Pierik AJ, Bremer E (2008) Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol 74:7286–7296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos VL, Escalante G, Yañez J, Zaror CA, Mondaca MA (2009) Isolation of arsenite-oxidizing bacteria from a natural biofilm associated to volcanic rocks of Atacama desert, Chile. J Basic Microbiol 49:93–97

    Article  Google Scholar 

  • Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138

    Article  CAS  PubMed  Google Scholar 

  • Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525

    Article  CAS  PubMed  Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Rudolph AS, Wistrom CA, Spargo BJ, Anchordoguy TJ (1988) Interactions of sugars with membranes. Biochim Biophys Acta 947:367–384

    Article  CAS  PubMed  Google Scholar 

  • Dose K, Bieger-Dose A, Labusch M, Gill M (1992) Survival in extreme dryness and DNA-single-strand breaks. Adv Sp Res 12:221–229

    Article  CAS  Google Scholar 

  • Eberly JO, Ringelberg DB, Indest KJ (2013) Physiological characterization of lipid accumulation and in vivo ester formation in Gordonia sp. KTR9. J Ind Microbiol Biotechnol 40:201–208

    Article  CAS  PubMed  Google Scholar 

  • Elbein AD (1967) Carbohydrate metabolism in Streptomycetes II. Isolation and enzymatic synthesis of trehalose. J Bacteriol 94:1520–1524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Empadinhas N, da Costa MS (2006) Diversity and biosynthesis of compatible solutes in hyper/thermophiles. Int Microbiol 9:199–206

    CAS  PubMed  Google Scholar 

  • Empadinhas N, Mendes V, Simões C, Santos M, Mingote A, Lamosa P, Santos H, da Costa MS (2007) Organic solutes in Rubrobacter xylanophilus: the first example of di-myo-inositol-phosphate in a thermophile. Extremophiles 11:667–673

    Article  CAS  PubMed  Google Scholar 

  • Essoussi I, Boujmil R, Nouioui I, Abbassi-Ghozzi I, Hamza A, Boudabous A, Gtari M (2012) Genetic diversity and esterase-profiling of actinobacteria isolated from Sahara desert stones and monuments. Geomicrobiol J 29:23–28

  • Fracchia L, Dohrmann AB, Martinotti MG, Tebbe CC (2006) Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Appl Microbiol Biotechnol 71:942–952

    Article  CAS  PubMed  Google Scholar 

  • Fredrickson JK, Li SW, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, Scholten JC, Brown MG, Balkwill DL, Daly MJ (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403

    Article  CAS  PubMed  Google Scholar 

  • Frommeyer M, Wiefel L, Steinbüchel A (2014) Features of the biotechnologically relevant polyamide family ‘cyanophycins’ and their biosynthesis in prokaryotes and eukaryotes. Crit Rev Biotechnol 8551:1–12

    Google Scholar 

  • Garcia-Pichel F, Pringault O (2001) Microbiology: cyanobacteria track water in desert soils. Nature 413:380–381

    Article  CAS  PubMed  Google Scholar 

  • Green JL, Angell CA (1988) Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J Phys Chem A 93:2880–2882

    Article  Google Scholar 

  • Griffin DW, Garrison VH, Herman JR, Shinn EA (2001) African desert dust in the Caribbean atmosphere: microbiology and public health. Aerobiologia 17:203–213

    Article  Google Scholar 

  • Hagen CA, Hawrylewicz EJ, Anderson BT, Tolkacz VK, Cephus ML (1968) Use of the scanning electron microscope for viewing bacteria in soil. Appl Microbiol 19:932–934

    Google Scholar 

  • Halliwell B (1995) The biological significance of oxygen-derived species. In: Valentine SJ, Foote CS, Greenberg A, Liebman JL (eds) Active oxygen in biochemistry. Springer US, London, pp 313–335

    Chapter  Google Scholar 

  • Hazer B, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12

    Article  CAS  PubMed  Google Scholar 

  • Hernández MA, Mohn WW, Martínez E, Rost E, Alvarez AF, Alvarez HM (2008) Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 9:600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hershkovitz N, Oren A, Cohen Y (1991) Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. Appl Environ Microbiol 57:645–648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heulin T, Barakat M, Christen R, Lesourd M, Sutra L, de Luca G, Achouak W (2003) Ramlibacter tataouinensis gen. Nov., sp. nov., and Ramlibacter henchirensis sp. nov., cyst-producing bacteria isolated from subdesert soil in Tunisia. Int J Syst Evol Microbiol 53:589–594

    Article  CAS  PubMed  Google Scholar 

  • Holmes PA (2002) Applications of PHB—a microbially produced biodegradable thermoplastic. Phys Technol 16:32–36

    Article  Google Scholar 

  • Houang ET, Sormunen RT, Lai L, Chan CY, Leong AS (1998) Effect of desiccation on the ultrastructural appearances of Acinetobacter baumannii and Acinetobacter lwoffii. J Clin Pathol 51:786–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Ishige T, Tani A, Sakai Y, Kato N (2003) Wax ester production by bacteria. Curr Opin Microbiol 6:244–250

    Article  CAS  PubMed  Google Scholar 

  • Jäckli H (1985) Zeitmaßstäbe der Erdgeschichte - Geologisches Geschehen in unserer Zeit. Birkhäuser, Basel

    Book  Google Scholar 

  • Jadan AP, van Berkel WJH, Golovleva LA, Golovlev EL (2001) Purification and properties of p-hydroxybenzoate hydroxylases from Rhodococcus strains. Biochemist 66:898–903

    CAS  Google Scholar 

  • Johnson RM, Madden JM, Swafford JR (1978) Taxonomy of antarctic bacteria from soils and air primarily of the McMurdo station and Victoria land dry valleys region. Terr Biol III 30:35–64

    Article  Google Scholar 

  • Kalscheuer R, Steinbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082

    Article  CAS  PubMed  Google Scholar 

  • Kalscheuer R, Stölting T, Steinbüchel A (2006a) Microdiesel: Escherichia coli engineered for fuel production. Microbiology (SGM) 152:2529–2536

    Article  CAS  Google Scholar 

  • Kalscheuer R, Stöveken T, Luftmann H, Malkus U, Reichelt R, Steinbüchel A (2006b) Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters. Appl Environ Microbiol 72:1373–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellogg CA, Griffin DW, Garrison VH, Kealy Peak K, Royall N, Smith RR, Eugene AS (2004) Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa. Aerobiologia 20:99–110

    Article  Google Scholar 

  • Klinger N (2015) Ökotreibstoff: Es muss nicht immer Erdöl sein. Salzburger Nachrichten. http//www.salzburg.com/nachrichten/welt/wirtschaft/sn/artikel/oekotreibstoff-es-muss-nicht-immer-erdoel-sein-149094/. Accessed 30 September 2016

  • Kurapova AI, Zenova GM, Sudnitsyn II, Kizilova AK, Manucharova NA, Norovsuren Z, Zvyagintsev DG (2012) Thermotolerant and thermophilic actinomycetes from soils of Mongolia desert steppe zone. Microbiology 81:98–108

    Article  CAS  Google Scholar 

  • Kuske CR, Barns SM, Busch JD (1997) Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl Environ Microbiol 63:3614–3621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lautenschläger H (2014) Wachse - eine unverzichtbare Stoffklasse. Kosmetik International. http://www.dermaviduals.de/deutsch/publikationen/inhaltsstoffe/wachse-eine-unverzichtbare-stoffklasse.html. Accessed 16 September 2016

  • LeBlanc JC, Gonçalves ER, Mohn WW (2008) Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol 74:2627–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohmann D (2013) Durstkünstler - Überlebensstrategien in der Wüste. In: Podbregar N, Lohmann D (eds) Im Fokus: Strategien der Evolution: Geniale Anpassungen und folgenreiche Fehltritte, 1st edn. Springer, Berlin Heidelberg, pp 215–226

    Chapter  Google Scholar 

  • López JA, Naranjo JM, Higuita JC, Cubitto MA, Cardona CA, Villar MA (2012) Biosynthesis of PHB from a new isolated Bacillus megaterium strain: outlook on future developments with endospore forming bacteria. Biotechnol Bioproc Eng 17:250–258

    Article  CAS  Google Scholar 

  • Lubin D (1998) Global surface ultraviolet radiation climatology from TOMS and ERBE data. J Geophys Res 103:26061–26091

    Article  Google Scholar 

  • Mallwitz J, Zieger R (1993) Polargebiete. Tessloff -Verlag

  • McBride MJ, Ensign JC (1987) Effects of intracellular trehalose content on Streptomyces griseus spores. J Bacteriol 169:4995–5001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClung NM (1960) Isolation of Nocardia asteroides from soils. Mycologia 52:154–156

    Article  Google Scholar 

  • Miotke FD (1985) Die Dünen im Victoria Valley, Victoria-Land, Antarktis. Ein Beitrag zur äolischen Formung im extrem kalten Klima. Polarforschung 55:79–125

    Google Scholar 

  • Mizuno K, Ohta A, Hyakutake M, Ichinomiya Y, Tsuge T (2010) Isolation of polyhydroxyalkanoate-producing bacteria from a polluted soil and characterization of the isolated strain Bacillus cereus YB-4. Polym Degrad Stab 95:1335–1339

    Article  CAS  Google Scholar 

  • Müller SD, Raschke K (2004) Das Kalorien-Nährwert-Lexikon, 2nd edn. Schlütersche Verlagsgesellschaft Mbh & Co. KG, Hannover

    Google Scholar 

  • Murphy DJ (1993) Structure, function and biogenesis of storage lipid bodies and oleosins in plants. Prog Lipid Res 32:247–280

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438

    Article  CAS  PubMed  Google Scholar 

  • Nauser T, Koppenol WH, Gebicki JM (2005) The kinetics of oxidation of GSH by protein radicals. Biochem J 392:693–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DL, Cox MM (2008a) Biological membranes and transport. In: Lehninger - principles of biochemistry. W. H. Freeman and Company, New York, pp 371–418

    Google Scholar 

  • Nelson DL, Cox MM (2008b) Fatty acid catabolism. In: Lehninger - principles of biochemistry. W. H. Freeman and Company, New York, pp 647–672

    Google Scholar 

  • Newsham KK, Pearce DA, Bridge PD (2010) Minimal influence of water and nutrient content on the bacterial community composition of a maritime Antarctic soil. Microbiol Res 165:523–530

    Article  CAS  PubMed  Google Scholar 

  • Nienow JA (2009) Encyclopedia of microbiology. Elsevier

  • Nijhoff M, Publishers WJ (1982) Distribution of Azotobacter in arid soils. Plant Soil 64:355–361

    Article  Google Scholar 

  • Obuekwe CO, Al-Jadi ZK, Al-Saleh ES (2009) Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment. Int Biodeterior Biodegradation 63:273–279

    Article  CAS  Google Scholar 

  • Ollivier B, Caumette P, Garcia JL, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olukoshi ER, Packter NM (1994) Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology (SGM) 140:931–943

    Article  CAS  Google Scholar 

  • Opatz T, Arduengo A (2016) Xylochemie - Ein Beitrag zur Nachhaltigen Chemischen Synthese. GIT-Labor – Portal für Anwender in Wissenschaft und Industrie. http://www.git-labor.de. Accessed 12 September 2016

  • Pal S, Manna A, Paul AK (1997) Induction of encystment and poly-β-hydroxybutyric acid production by Azotobacter chroococcum MAL-201. Curr Microbiol 35:327–330

    Article  CAS  PubMed  Google Scholar 

  • Palmer R, Friedmann E (1990) Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microb Ecol 19:111–118

    Article  Google Scholar 

  • Pearce DA (2012) Extremophiles in Antarctica: life at low temperatures. Stan-Lotter E, Fendrihan S (eds.), Wien

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    Article  CAS  Google Scholar 

  • Pittelkow M (2011) Synthese und physiologische Funktion der chemischen Chaperone Ectoin und Hydroxyectoin. Dissertation, Philipps-Universität Marburg

  • Pott R (2005) Allgemeine Geobotanik - Biogeosysteme und Biodiversität. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radwan SS, Al-Muteirie AS (2001) Vitamin requirements of hydrocarbon-utilizing soil bacteria. Microbiol Res 155:301–307

    Article  CAS  PubMed  Google Scholar 

  • Rajeev L, da Rocha UN, Klitgord N, Luning EG, Fortney J, Axen SD, Shih PM, Bouskill NJ, Bowen BP, Kerfeld CA, Garcia-Pichel F, Brodie EL, Northen TR, Mukhopadhyay A (2013) Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J 7:2178–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao AV, Venkateswarlu B (1982) Associative symbiosis of Azospirillum lipoferum with dicotyledonous succulent plants of the Indian desert. Can J Microbiol 28:778–782

    Article  CAS  Google Scholar 

  • Ratledge C (1984) Microbial oils and fats—an overview. Biotechnol Oils Fats Ind 119–127

  • Reed RH, Richardson DL, Warr SRC, Stewart WDP (1984) Carbohydrate accumulation and osmotic stress in cyanobacteria. Microbiology (SGM) 130:1–4

    Article  CAS  Google Scholar 

  • Reiser S, Somerville C (1997) Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme a reductase. J Bacteriol 179:2969–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuning A (2015) Rohstoff für eine nachhaltige Produktion. Deutschlandfunk - Wissenschaft im Brennpunkt. http://www.deutschlandfunk.de/chemieindustrie-rohstoff-fuer-eine-nachhaltige-produktion.740.de.h. Accessed 12 September 2016

  • Röttig A, Hauschild P, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A (2016) Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil. J Biotechnol 225:48–56

    Article  PubMed  CAS  Google Scholar 

  • Russell NJ (1974) The lipid composition of the psychrophilic bacterium Micrococcus cryophilus. J Gen Microbiol 80:217–225

    Article  CAS  PubMed  Google Scholar 

  • Sadasivan L, Neyra CA (1985) Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. J Bacteriol 163:716–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiraldi C, Di Lernia I, De Rosa M (2002) Trehalose production: exploiting novel approaches. Trends Biotechnol 20:420–425

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen KS (1972) How animals work. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schmidt-Nielsen K, Schmidt-Nielsen B (1952) Metabolism of desert mammals. Physiol Rev 32:135–166

    CAS  PubMed  Google Scholar 

  • Senior PJ, Dawes EA (1971) Poly-β-hydroxybutyrate biosynthesis and the regulation of glucose metabolism in Azotobacter beijerinckii. Biochem J 125:55–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seufferheld MJ, Alvarez HM, Farias ME (2008) Role of polyphosphates in microbial adaptation to extreme environments. Appl Environ Microbiol 74:5867–5874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Severin J, Wohlfarth A, Galinski EA (1992) The predominant role of recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. J Gen Microbiol 138:1629–1638

    Article  CAS  Google Scholar 

  • Shravage BV, Dayananda KM, Patole MS, Shouche YS (2007) Molecular microbial diversity of a soil sample and detection of ammonia oxidizers from Cape Evans, McMurdo Dry Valley, Antarctica. Microbiol Res 162:15–25

    Article  CAS  PubMed  Google Scholar 

  • Singer ME, Tyler SM, Finnerty WR (1985) Growth of Acinetobacter sp. strain HO1-N on n-hexadecanol: physiological and ultrastructural characteristics. J Bacteriol 162:162–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SC, Sinha RP, Häder D (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41:297–308

    CAS  Google Scholar 

  • Singh M, Patel SK, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Factories 8:38

    Article  CAS  Google Scholar 

  • Skujinš J (1984) Microbial ecology of desert soils. In: Marshall KC (ed) Advances in microbial ecology Vol 7. Springer, US, pp 49–91

    Chapter  Google Scholar 

  • Smit E, Leeflang P, Gommans S, van den Broek J, van Mil S, Wernars K (2001) Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl Environ Microbiol 67:2284–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorkhoh NA, Ali N, Dashti N, Al-Mailem DM, Al-Awadhi H, Eliyas M, Radwan SS (2010) Soil bacteria with the combined potential for oil utilization, nitrogen fixation, and mercury resistance. Int Biodeterior Biodegrad 64:226–231

    Article  CAS  Google Scholar 

  • Stal LJ, Reed RH (1987) Low-molecular mass carbohydrate accumulation in cyanobacteria from a marine microbial mat in response to salt. FEMS Microbiol Ecol 3:305–312

    Article  Google Scholar 

  • Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24

    Article  Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Stevenson LH, Socolofsky MD (1966) Cyst formation and poly-β-hydroxybutyric acid accumulation in Azotobacter. J Bacteriol 91:304–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stöveken T, Kalscheuer R, Malkus U, Reichelt R, Steinbüchel A (2005) The wax ester synthase/acyl coenzyme A: diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. J Bacteriol 187:1369–1376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki T, Tanaka K, Matsubara I, Kinoshita S (1969) Trehalose lipid and α-branched-β-hydroxy fatty acid formed by bacteria grown on n-alkanes. Agric Biol Chem 33:1619–1627

    Article  CAS  Google Scholar 

  • Taylor P, Yateem A, Balba MT (2002) Isolation and characterization of biosurfactant-producing bacteria from oil-contaminated soil. Soil Sediment Contam 11:41–55

    Article  Google Scholar 

  • Thangakani AM, Kumar S, Velmurugan D, Gromiha MSM (2012) How do thermophilic proteins resist aggregation? Proteins Struct Funct Bioinforma 80:1003–1015

    Article  CAS  Google Scholar 

  • Thompson KT, Crocker FH, Fredrickson HL (2005) Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsis spp. Appl Environmental Microbiol 71:8265–8272

    Article  CAS  Google Scholar 

  • Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vachon V, McGarrity JT, Breuil C, Armstrong JB, Kushner DJ (1982) Cellular and extracellular lipids of Acinetobacter lwoffi during growth on hexadecane. Can J Microbiol 28:660–666

    Article  CAS  Google Scholar 

  • Warr SRC, Reed RH, Stewart WDP (1987) Low-molecular-weight carbohydrate biosynthesis and the distribution of cyanobacteria (blue-green algae) in marine environments. Br Phycol J 22:175–180

    Article  Google Scholar 

  • Welsh DT, Herbert RA (1993) Identification of organic solutes accumulated by purple and green Sulphur bacteria during osmotic stress using natural abundance 13C nuclear magnetic resonance spectroscopy. FEMS Microbiol Ecol 13:145–149

    Article  CAS  Google Scholar 

  • Widawati S (2005) Biodiversity of soil microbes from rhizosphere at Wamena biological garden (WBiG), Jayawijaya, Papua. Biodiversitas, J Biol Divers 6:6–11

    Article  Google Scholar 

  • Wierzchos J, de los Ríos A, Ascaso C (2012) Microorganisms in desert rocks: the edge of life on earth. Int Microbiol 15:173–183

    CAS  PubMed  Google Scholar 

  • Woods A, Watwood M, Schwartz E (2011) Identification of a toluene-degrading bacterium from a soil sample through H218O DNA stable isotope probing. Appl Environ Microbiol 77:5995–5999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Huang H, Hu G, Chen J, Ho KP, Chen G-Q (2001) Production of poly-3-hydroxybutyrate by Bacillus sp. JMa5 cultivated in molasses media. Antonie Van Leeuwenhoek 80:111–118

    Article  CAS  PubMed  Google Scholar 

  • Yermanos DM (1975) Composition of jojoba seed during development. J Am Oil Chem Soc 52:115–117

    Article  CAS  Google Scholar 

  • Young RA (1976) Fat, energy and mammalian survival. Integr Comp Biol 16:699–710

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Steinbüchel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals or human participants performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 123 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauschild, P., Röttig, A., Madkour, M.H. et al. Lipid accumulation in prokaryotic microorganisms from arid habitats. Appl Microbiol Biotechnol 101, 2203–2216 (2017). https://doi.org/10.1007/s00253-017-8149-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8149-0

Keywords

Navigation