Skip to main content
Log in

The rhizospheres of traditional medicinal plants in Panxi, China, host a diverse selection of actinobacteria with antimicrobial properties

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Actinobacteria are a prolific source of antibiotics. Since the rate of discovery of novel antibiotics is decreasing, actinobacteria from unique environments need to be explored. In particular, actinobacterial biocontrol strains from medicinal plants need to be studied as they can be a source of potent antibiotics. We combined culture-dependent and culture-independent methods in analyzing the actinobacterial diversity in the rhizosphere of seven traditional medicinal plant species from Panxi, China, and assessed the antimicrobial activity of the isolates. Each of the plant species hosted a unique set of actinobacterial strains. Out of the 64 morphologically distinct isolates, half were Streptomyces sp., eight were Micromonospora sp., and the rest were members of 18 actinobacterial genera. In particular, Ainsliaea henryi Diels. hosted a diverse selection of actinobacteria, although the 16S ribosomal RNA (rRNA) sequence identity ranges of the isolates and of the 16S rRNA gene clone library were not congruent. In the clone library, 40% of the sequences were related to uncultured actinobacteria, emphasizing the need to develop isolation methods to assess the full potential of the actinobacteria. All Streptomyces isolates showed antimicrobial activity. While the antimicrobial activities of the rare actinobacteria were limited, the growth of Escherichia coli, Verticillium dahliae, and Fusarium oxysporum were inhibited only by rare actinobacteria, and strains related to Saccharopolyspora shandongensis and Streptosporangium roseum showed broad antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26. doi:10.1038/ja.2005.1

    Article  CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. doi:10.1111/j.1574-6941.2009.00654.x

    Article  CAS  Google Scholar 

  • Brito AM, Gagne S, Antoun H (1995) Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria. Appl Environ Microbiol 61:194–199

    Google Scholar 

  • Buée M, Boer DW, Martin F, Overbeek VL, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212. doi:10.1007/s11104-009-9991-3

    Article  Google Scholar 

  • Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608. doi:10.1128/AEM.69.9.5603-5608.2003

    Article  CAS  Google Scholar 

  • Cottrell MT, Kirchman DL (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol 66:5116–5122. doi:10.1128/AEM.66.12.5116-5122.2000

    Article  CAS  Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    CAS  Google Scholar 

  • Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP, Xu LH, Jiang CL (2001) Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51:357–363

    CAS  Google Scholar 

  • Das M, Royer TV, Leff LG (2007) Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Appl Environ Microbiol 73:756–767. doi:10.1128/AEM.01170-06

    Article  CAS  Google Scholar 

  • Du J, Fan G, Zhang Y (2007) Current situation and outlook of development and use special biotic resources in Panxi region. Sci Technol Inf Panzh 32:8–11

    Google Scholar 

  • El-Tarabilya KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520. doi:10.1016/j.soilbio.2005.12.017

    Article  Google Scholar 

  • Guan TW, Liu Y, Zhao K, Xia ZF, Zhang XP, Zhang LL (2010) Actinopolyspora xinjiangensis sp. nov., a novel exteremely halophilic actinomycete isolated from a salt lake in Xinjiang, China. Antonie Van Leeuwenhoek 98:447–453. doi:10.1007/s10482-010-9458-9

    Article  CAS  Google Scholar 

  • Hill P, Kristufek V, Dijkhuizen L, Boddy C, Kroetsch D, van Elsas JD (2011) Land use intensity controls actinobacterial community structure. Microb Ecol 61:286–302. doi:10.1007/s00248-010-9752-0

    Article  Google Scholar 

  • Hinsinger P, Plassard C, Jaillard B (2006) Rhizosphere: a new frontier for soil biogeochemistry. J Geochem Explor 88:210–213. doi:10.1016/j.gexplo.2005.08.041

    Article  CAS  Google Scholar 

  • Jangid K, Williams AM, Franzluebbers JA, Sanderlin SJ, Reeves HJ, Jenkins BM, Endale MD, Coleman CD, Whitman BW (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biol Biochem 40:2843–2853. doi:10.1016/j.Soilbio.2008.07.030

    Article  CAS  Google Scholar 

  • Jensen PR, Mincer TJ, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Antonie Van Leeuwenhoek 87:43–48. doi:10.1007/s10482-004-6540-1

    Article  CAS  Google Scholar 

  • Juhnke ME, Mathre DE, Sands DC (1987) Identification and characterization of rhizosphere-competent bacteria of wheat. Appl Environ Microbiol 53:2793–2799

    CAS  Google Scholar 

  • Khamna S, Yokot A, Lumyong S (2009a) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655. doi:10.1007/s11274-008-9933-x

    Article  CAS  Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009b) L-Asparaginase production by actinomycetes isolated from some Thai medicinal plant rhizosphere soils. Int J Integr Biol 6:22–26

    CAS  Google Scholar 

  • Kurtboke DI (2011) Exploitation of phage battery in the search for bioactive actinomycetes. Appl Microbiol Biotechnol 89:931–937. doi:10.1007/s00253-010-3021-5

    Article  Google Scholar 

  • Lewis K, Epstein S, D'Onofrio A, Ling LL (2010) Uncultured microorganisms as a source of secondary metabolites. J Antibiot (Tokyo) 63:468–476. doi:10.1038/ja.2010.87

    Article  CAS  Google Scholar 

  • Li J, Zhao GZ, Chen HH, Wang HB, Qin S, Zhu WY, Xu LH, Jiang CL, Li WJ (2008) Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest. Lett Appl Microbiol 47:574–580. doi:10.1111/j.1472-765X.2008.02470.x

    Article  CAS  Google Scholar 

  • Luo YP, Zhao XT, Yang XD, Zhao JF, Li L (2009) Progress in the studies on thechemical constituents and bioactivities of ainsliaea. Asia-Pacific Traditional Med 5:158–160

    Google Scholar 

  • Maidak BL, Cole JR, Parker CT Jr, Garrity GM, Larsen N, Li B, Lilburn TG, McCaughey MJ, Olsen GJ, Overbeek R, Pramanik S, Schmidt TM, Tiedje JM, Woese CR (1999) A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27:171–173. doi:10.1093/nar/27.1.171

    Article  CAS  Google Scholar 

  • Merckx R, Dijkra A, Hartog AD, Veen JAV (1987) Production of root-derived material and associated microbial growth in soil at different nutrient levels. Biol Fertil Soils 5:126–132. doi:10.1007/BF00257647

    Article  Google Scholar 

  • Militon C, Boucher D, Vachelard C, Perchet G, Barra V, Troquet J, Peyretaillade E, Peyret P (2010) Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil. FEMS Microbiol Ecol 74:669–681. doi:10.1111/j.1574-6941.2010.00982.x

    Article  CAS  Google Scholar 

  • Mincer TJ, Fenical W, Jensen PR (2005) Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora. Appl Environ Microbiol 71:7019–7028. doi:10.1128/AEM.71.11.7019-7028.2005

    Article  CAS  Google Scholar 

  • Mitra A, Santra SC, Mukherjee J (2008) Distribution of actinomycetes, their antagonistic behaviour and the physico-chemical characteristics of the world's largest tidal mangrove forest. Appl Microbiol Biotechnol 80:685–695. doi:10.1007/s00253-008-1626-8

    Article  CAS  Google Scholar 

  • Muscholl-Silberhorn A, Thiel V, Imhoff JF (2008) Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean sea. Microb Ecol 55:94–106. doi:10.1007/s00248-007-9255-9

    Article  Google Scholar 

  • Nwachukwu RES, Ekwealor IA (2009) Methionine-producing Streptomyces species isolated from Southern Nigeria soil. Afr J Microbiol Res 3:478–481

    CAS  Google Scholar 

  • Pedros-Alio C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263. doi:10.1016/j.tim.2006.04.007

    Article  CAS  Google Scholar 

  • Peng YX, Jiang Y, Duan SR, Li WJ, Xu LH (2007) Selective isolation methods of rare actinomycetes. J Yunnan Univ (Natural Sci Ed) 29:86–89

    Google Scholar 

  • Qia ZL, Lai HX, Qiang YR, Li L (2006) Primary study on microorganism ecology in saline-alkali soil of Shaanxi province. Acta Agri Boreali-Occidentalis Sinica 15:60–64. doi:1004-1389.0.2006-03-013

    Google Scholar 

  • Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186. doi:10.1128/AEM.01034-09

    Article  CAS  Google Scholar 

  • Qiu D, Ruan J, Huang Y (2008) Selective isolation and rapid identification of members of the genus Micromonospora. Appl Environ Microbiol 74:5593–5597. doi:10.1128/AEM.00303-08

    Article  CAS  Google Scholar 

  • Sanchez O, Gasol JM, Massana R, Mas J, Pedros-Alio C (2007) Comparison of different denaturing gradient gel electrophoresis primer sets for the study of marine bacterioplankton communities. Appl Environ Microbiol 73:5962–5967. doi:10.1128/AEM.00817-07

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz B, Boyle C, Sieber T (eds) Soil biology. Springer, Heidelberg, pp 3–7

    Google Scholar 

  • Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32. doi:10.1111/j.1574-6941.2002.tb00903.x

    Article  CAS  Google Scholar 

  • Siddiqui AZ (2005) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 111–120

    Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751. doi:10.1128/AEM.67.10.4742-4751.2001

    Article  CAS  Google Scholar 

  • Smith SA, Tank DC, Boulanger LA, Bascom-Slack CA, Eisenman K, Kingery D, Babbs B, Fenn K, Greene JS, Hann BD, Keehner J, Kelley-Swift EG, Kembaiyan V, Lee SJ, Li P, Light DY, Lin EH, Ma C, Moore E, Schorn MA, Vekhter D, Nunez PV, Strobel GA, Donoghue MJ, Strobel SA (2008) Bioactive endophytes warrant intensified exploration and conservation. PLoS One 3:3052. doi:10.1371/journal.pone.0003052

    Article  Google Scholar 

  • Song ZQ, Zhi XY, Li WJ, Jiang HC, Zhang CL, Dong HL (2009) Actinobacterial diversity in hot springs in Tengchong (China), Kamchatka (Russia), and Nevada (USA). Geomicrobiol J 26:256–263. doi:10.1080/01490450902892373

    Article  CAS  Google Scholar 

  • Stach JE, Maldonado LA, Ward AC, Goodfellow M, Bull AT (2003) New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ Microbiol 5:828–841. doi:10.1046/j.1462-2920.2003.00483.x

    Article  CAS  Google Scholar 

  • Taechowisan T, Peberdy FJ, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385. doi:10.1023/A:1023901107182

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  CAS  Google Scholar 

  • Thangapandian V, Ponmurugan P, Ponmurugan K (2007) Actinomycetes diversity in the rhizosphere soils of different medicinal plants in Kolly Hills-Tamilnadu, India, for secondary metabolite production. Asian J Plant Sci 6:66–70. doi:10.3923/ajps.2007.66.70

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

    Article  CAS  Google Scholar 

  • Tobias K, Mervyn JB, Mark JB, Keith FC, David AH (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • Turpaulta MP, Gobranb GR, Bonnauda P (2007) Temporal variations of rhizosphere and bulk soil chemistry in a douglas fir stand. Geoderma 137:490–496. doi:10.1016/j.geoderma.2006.10.005

    Article  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74. doi:10.1126/science.1093857

    Article  CAS  Google Scholar 

  • Verma VC, Gond SK, Kumar A, Mishra A, Kharwar RN, Gange AC (2009) Endophytic Actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity. Microb Ecol 57:749–756. doi:10.1007/s00248-008-9450-3

    Article  Google Scholar 

  • von der Weid I, Paiva E, Nobrega A, van Elsas JD, Seldin L (2000) Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Res Microbiol 151:369–381. doi:10.1016/S0923-2508(00)00160-1

    Article  Google Scholar 

  • Wu J, Guan T, Jiang H, Zhi X, Tang S, Dong H, Zhang L, Li W (2009) Diversity of Actinobacterial community in saline sediments from Yunnan and Xinjiang, China. Extremophiles 13:623–632. doi:10.1007/s00792-009-0245-3

    Article  Google Scholar 

  • Xu L, Li Q, Jiang C (1996) Diversity of soil actinomycetes in Yunnan, China. Appl Environ Microbiol 62:244–248

    CAS  Google Scholar 

  • Xu YX, Wang GG, Jin J, Liu JJ, Zhang QY, Liu XB (2009) Bacterial communities in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage. Soil Biol Biochem 41:919–925. doi:10.1016/j.soilbio.2008.10.027

    Article  CAS  Google Scholar 

  • Yan XC (1992) Isolation and identification of actinomycetes. Science Press, Beijing

    Google Scholar 

  • Yuan HM, Zhang XP, Zhao K, Zhong K, Gu YF, Lindström K (2008) Genetic characterisation of endophytic actinobacteria isolated from the medicinal plants in Sichuan. Ann Microbiol 58:597–604. doi:10.1007/BF03175563

    Article  CAS  Google Scholar 

  • Zhao K, Penttinen P, Tw G, Xiao J, Chen Q, Xu J, Lindstrom K, Zhang LL, Zhang XP, Strobel GA (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi Plateau. China Curr Microbiol 62:182–190. doi:10.1007/s00284-010-9685-3

    Article  CAS  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    CAS  Google Scholar 

  • Zhu N, Zhao P, Shen Y (2009) Selective isolation and ansamycin-targeted screenings of commensal actinomycetes from the "maytansinoids-producing" arboreal Trewia nudiflora. Curr Microbiol 58:87–94. doi:10.1007/s00284-008-9284-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the foundation of National Science Program of China (Project no. 30570062) and Sichuan Provincial Science and Technology International Cooperative Project. We sincerely acknowledge kind support from the Key Laboratory of Protection and Utilization of Biological Resources, Tarim University and Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography, State Oceanic Administration, when our laboratory was damaged by the 2008 Sichuan earthquake.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

The isolation media of actinobacteria in this study (DOC 39 kb)

Table S2

Actinobacterial strains isolated in this study. Sixty-four morphologically distinct isolates were divided into 12 phenotypic groups. The 16S rDNA genes of all the isolates in phenotypic groups 1–5 and 9–12, considered as putative rare actinobacteria, and of the representative isolates in groups 6–8, considered as putative Streptomyces isolates (DOC 77 kb)

Table S3

The sequencing results of actinobacterial isolates in Fig. 6 (DOC 36 kb)

Fig. S1

Location of the Panxi plateau and the sampling sites (DOC 68 kb)

Fig. S2

The medicinal plants used in this study (DOC 5061 kb)

Fig. S3

The average actinobacterial CFU obtained from different media (DOC 47 kb)

Fig. S4

The actinobacterial CFU obtained from each of the medicinal plants with different pretreatment methods (DOC 49 kb)

Fig. S5

Actinobacterial colonies from Ainsliaea henryi Diels rhizosphere (DOC 104 kb)

Fig. S6

Actinobactierial colonies from Ainsliaea henryi Diels rhizosphere on medium after different pre-treatments (DOC 81 kb)

Fig. S7

Morphology of actinobacteria isolated from rhizospheric soil of medicinal plants (DOC 149 kb)

Fig. S8

Rarefaction curve for Ainsliaea henryi rhizosphere actinobacterial 16S rDNA clone library (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, K., Penttinen, P., Chen, Q. et al. The rhizospheres of traditional medicinal plants in Panxi, China, host a diverse selection of actinobacteria with antimicrobial properties. Appl Microbiol Biotechnol 94, 1321–1335 (2012). https://doi.org/10.1007/s00253-011-3862-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3862-6

Keywords

Navigation