Skip to main content
Log in

The effect of trehalose on the fermentation performance of aged cells of Saccharomyces cerevisiae

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The fermentation process offers a wide variety of stressors for yeast, such as temperature, aging, and ethanol. To evaluate a possible beneficial effect of trehalose on ethanol production, we used mutant strains of Saccharomyces cerevisiae possessing different deficiencies in the metabolism of this disaccharide: in synthesis, tps1; in transport, agt1; and in degradation, ath1 and nth1. According to our results, the tps1 mutant, the only strain tested unable to synthesize trehalose, showed the lowest fermentation yield, indicating that this sugar is important to improve ethanol production. At the end of the first fermentation cycle, only the strains deficient in transport and degradation maintained a significant level of the initial trehalose. The agt1, ath1, and nth1 strains showed the highest survival rates and the highest proportions of non-petites. Accumulation of petites during fermentation has been correlated to low ethanol production. When recycled back for a subsequent fermentation, those mutant strains produced the highest ethanol yields, suggesting that trehalose is required for improving fermentative capacity and longevity of yeasts, as well as their ability to withstand stressful industrial conditions. Finally, according to our results, the mechanism by which trehalose improves ethanol production seems to involve mainly protection against protein oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamis PD, Panek AD, Eleutherio EC (2007) Vacuolar compartmentation of the cadmium–glutathione complex protects Saccharomyces cerevisiae from mutagenesis. Toxicol Lett 173:1–7

    Article  CAS  Google Scholar 

  • Aguilera F, Peinado RA, Millan C, Ortega JM, Mauricio JC (2006) Relationship between ethanol tolerance, H+–ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110:34–42

    Article  CAS  Google Scholar 

  • Bandara A, Fraser S, Chambers PJ, Stanley GA (2009) Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress. FEMS Yeast Res 9:1208–1216

    Article  CAS  Google Scholar 

  • Barham D, Trinder P (1972) An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst 97:142–145

    Article  CAS  Google Scholar 

  • Barry JA, Gawrisch K (1995) Effects of ethanol on lipid bilayers containing cholesterol, gangliosides, and sphingomyelin. Biochemistry 34(27):8852–8860

    Article  CAS  Google Scholar 

  • Basso LC, de Amorim HV, de Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163

    Article  CAS  Google Scholar 

  • Birch RM, Walker GM (2000) Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme Microb Technol 26:678–687

    Article  CAS  Google Scholar 

  • Bonawitz ND, Rodeheffer MS, Shadel GS (2006) Defective mitochondrial gene expression results in reactive oxygen species-mediated inhibition of respiration and reduction of yeast life span. Mol Cell Biol 26:4818–4829

    Article  CAS  Google Scholar 

  • Brin M (1966) Transketolase: clinical aspects. Methods Enzymol 9:506–514

    Article  Google Scholar 

  • Cabiscol E, Piulats E, Echave P, Herrero E, Ros J (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275:27393–27398

    CAS  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    Article  CAS  Google Scholar 

  • da Costa Morato Nery D, da Silva CG, Mariani D, Fernandes PN, Pereira MD, Panek AD, Eleutherio EC (2008) The role of trehalose and its transporter in protection against reactive oxygen species. Biochim Biophys Acta 1780:1408–1411

    Google Scholar 

  • Demain AL (2009) Biosolutions to the energy problem. J Ind Microbiol Biotechnol 36:319–332

    Article  CAS  Google Scholar 

  • Eleutherio EC, Araujo PS, Panek AD (1993) Role of the trehalose carrier in dehydration resistance of Saccharomyces cerevisiae. Biochim Biophys Acta 1156:263–266

    CAS  Google Scholar 

  • Ferreira JC, Silva JT, Panek AD (1996) A regulatory role for TSL1 on trehalose synthase activity. Biochem Mol Biol Int 38:259–265

    CAS  Google Scholar 

  • Galeote VA, Blondin B, Dequin S, Sablayrolles JM (2001) Stress effects of ethanol on fermentation kinetics by stationary-phase cells of Saccharomyces cerevisiae. Biotechnol Lett 23:677–681

    Article  Google Scholar 

  • Garre E, Perez-Torrado R, Gimeno-Alcaniz JV, Matallana E (2009) Acid trehalase is involved in intracellular trehalose mobilization during postdiauxic growth and severe saline stress in Saccharomyces cerevisiae. FEMS Yeast Res 9:52–62

    Article  CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    CAS  Google Scholar 

  • Gibson BR, Prescott KA, Smart KA (2008) Petite mutation in aged and oxidatively stressed ale and lager brewing yeast. Lett Appl Microbiol 46:636–642

    Article  CAS  Google Scholar 

  • Good L, Dowhanick TM, Ernandes JE, Russell I, Steawart GG (1993) Rho- mitochondrial genomes and their influence on adaptation to nutrient stress in lager yeast strains. J Am Soc Brew Chem 51:35–39

    CAS  Google Scholar 

  • Hallsworth JE, Nomura Y, Iwahara M (1998) Ethanol induced water stress and fungal growth. J Ferment Bioeng 86:451–456

    Article  CAS  Google Scholar 

  • He S, Bystricky K, Leon S, Francois JM, Parrou JL (2009) The Saccharomyces cerevisiae vacuolar acid trehalase is targeted at the cell surface for its physiological function. FEBS J 276:5432–5446

    Article  CAS  Google Scholar 

  • Heeren G, Jarolim S, Laun P, Rinnerthaler M, Stolze K, Perrone GG, Kohlwein SD, Nohl H, Dawes IW, Breitenbach M (2004) The role of respiration, reactive oxygen species and oxidative stress in mother cell-specific ageing of yeast strains defective in the RAS signalling pathway. FEMS Yeast Res 5:157–167

    Article  CAS  Google Scholar 

  • Herdeiro RS, Pereira MD, Panek AD, Eleutherio EC (2006) Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim Biophys Acta 1760:340–346

    CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  Google Scholar 

  • Hu XH, Wang MH, Tan T, Li JR, Yang H, Leach L, Zhang RM, Luo ZW (2007) Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 175:1479–1487

    Article  CAS  Google Scholar 

  • Jules M, Beltran G, Francois J, Parrou JL (2008) New insights into trehalose metabolism by Saccharomyces cerevisiae: NTH2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization. Appl Environ Microbiol 74:605–614

    Article  CAS  Google Scholar 

  • Landolfo S, Politi H, Angelozzi D, Mannazzu I (2008) ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Biochim Biophys Acta 1780:892–898

    CAS  Google Scholar 

  • Mannarino SC, Amorim MA, Pereira MD, Moradas-Ferreira P, Panek AD, Costa V, Eleutherio EC (2008) Glutathione is necessary to ensure benefits of calorie restriction during ageing in Saccharomyces cerevisiae. Mech Ageing Dev 129:700–705

    Article  CAS  Google Scholar 

  • Merico A, Sulo P, Piskur J, Compagno C (2007) Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J 274:976–989

    Article  CAS  Google Scholar 

  • Mishra P, Prasad R (1989) Relationship between ethanol tolerance and fatty acyl composition of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 30:294–298

    Article  CAS  Google Scholar 

  • Mukhtar K, Asgher M, Afghan S, Hussain K, Zia-Ul-Hussnain S (2010) Comparative study on two commercial strains of Saccharomyces cerevisiae for optimum ethanol production on industrial scale. J Biomed Biotechnol. doi:10.1155/2010/419586

    Google Scholar 

  • Nwaka S, Kopp M, Holzer H (1995a) Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae. J Biol Chem 270:10193–10198

    Article  CAS  Google Scholar 

  • Nwaka S, Mechler B, Destruelle M, Holzer H (1995b) Phenotypic features of trehalase mutants in Saccharomyces cerevisiae. FEBS Lett 360:286–290

    Article  CAS  Google Scholar 

  • Paiva CL, Panek AD (1996) Biotechnological applications of the disaccharide trehalose. Biotechnol Annu Rev 2:293–314

    Article  CAS  Google Scholar 

  • Rosenfeld E, Beauvoit B (2003) Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae. Yeast 20:1115–1144

    Article  CAS  Google Scholar 

  • Santiard D, Ribiere C, Nordmann R, Houee-Levin C (1995) Inactivation of Cu, Zn-superoxide dismutase by free radicals derived from ethanol metabolism: a γ radiolysis study. Free Radic Biol Med 19:121–127

    Article  CAS  Google Scholar 

  • Seo HB, Kim HJ, Lee OK, Ha JH, Lee HY, Jung KH (2009) Measurement of ethanol concentration using solvent extraction and dichromate oxidation and its application to bioethanol production process. J Ind Microbiol Biotechnol 36:285–292

    Article  CAS  Google Scholar 

  • Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    Article  CAS  Google Scholar 

  • Snowden C, Schierholtz R, Poliszczuk P, Hughes S, van der Merwe G (2009) ETP1/YHL010c is a novel gene needed for the adaptation of Saccharomyces cerevisiae to ethanol. FEMS Yeast Res 9:372–380

    Article  Google Scholar 

  • Stambuk BU, Panek AD, Crowe JH, Crowe LM, de Araujo PS (1998) Expression of high-affinity trehalose-H+ symport in Saccharomyces cerevisiae. Biochim Biophys Acta 1379:118–128

    CAS  Google Scholar 

  • Steels EL, Learmonth RP, Watson K (1994) Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 140:569–576

    Article  CAS  Google Scholar 

  • Thevelein JM (1984) Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59

    CAS  Google Scholar 

  • Thevelein JM, Hohmann S (1995) Trehalose synthase: guard to the gate of glycolysis in yeast? Trends Biochem Sci 20:3–10

    Article  CAS  Google Scholar 

  • Trevelyan WE, Harrison JS (1956) Studies on yeast metabolism. 5. The trehalose content of baker’s yeast during anaerobic fermentation. Biochem J 62:177–183

    CAS  Google Scholar 

  • van Dijken JP, Weusthuis RA, Pronk JT (1993) Kinetics of growth and sugar consumption in yeasts. Antonie Leeuwenhoek 63:343–352

    Article  Google Scholar 

  • Voit EO (2003) Biochemical and genomic regulation of the trehalose cycle in yeast: review of observations and canonical model analysis. J Theor Biol 223:55–78

    Article  CAS  Google Scholar 

  • Walker GM (1998) Yeast metabolism. In: Walker GM (ed) Yeast physiology and biotechnology. Wiley, Chichester, pp 203–264

    Google Scholar 

  • Westholm JO, Nordberg N, Murén E, Ameur A, Komorowski J, Ronne H (2008) Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. BMC Genomics 9:601

    Article  Google Scholar 

  • Wheals AE, Basso LC, Alves DM, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17:482–487

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from CAPES, FINEP, and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elis C. A. Eleutherio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trevisol, E.T.V., Panek, A.D., Mannarino, S.C. et al. The effect of trehalose on the fermentation performance of aged cells of Saccharomyces cerevisiae . Appl Microbiol Biotechnol 90, 697–704 (2011). https://doi.org/10.1007/s00253-010-3053-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3053-x

Keywords

Navigation