Skip to main content
Log in

Projections from the entorhinal cortex, perirhinal cortex, presubiculum, and parasubiculum to the medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The projections from the perirhinal cortex, entorhinal cortex, parasubiculum, and presubiculum to the thalamus were examined using both anterograde and retrograde tracers. Attention focused on the routes taken by these projections, which were delineated by combining surgical tract section with the placement of a tracer. Projections to the anterior thalamic nuclei almost exclusively used the fornix. These relatively light projections, which arose from all areas of the entorhinal cortex, from the presubiculum, parasubiculum, and area 35 of the perirhinal cortex, terminated mainly in the anterior ventral nucleus. In contrast, the projections to the lateral dorsal nucleus from the entorhinal cortex, presubiculum and parasubiculum were denser than those to the anterior thalamic nuclei. The projections to the lateral dorsal nucleus used two routes. While nearly all of the projections from the subicular complex used the fornix, many of the entorhinal cortex projections passed caudally in the temporopulvinar bundle to reach the lateral dorsal nucleus. The perirhinal cortex, as well as the entorhinal cortex, also projects to nucleus medialis dorsalis. These projections exclusively used the external capsule and thence the inferior thalamic peduncle. Other temporal-thalamic projections included those to the medial pulvinar, via the temporopulvinar bundle, from the perirhinal and entorhinal cortices, and those to the paraventricular nucleus from the entorhinal cortex. By identifying these routes, it is possible to appreciate how different lesions might disconnect temporal–diencephalic pathways and so contribute to memory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aggleton JP, Brown MW (1999) Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behav Brain Sci 22:425–489

    Article  PubMed  CAS  Google Scholar 

  • Aggleton JP, Mishkin M (1984) Projections of the amygdala to the thalamus in the cynomolgus monkey. J Comp Neurol 222:56–68

    Article  PubMed  CAS  Google Scholar 

  • Aggleton JP, Mishkin M (1993a) Visual recognition impairment following medial thalamic lesions in monkeys. Neuropsychologia 21:189–197

    Article  Google Scholar 

  • Aggleton JP, Mishkin M (1993b) Memory impairments following restricted medial thalamic lesions in monkeys. Exp Brain Res 52:199–209

    Google Scholar 

  • Aggleton JP, Sahgal A (1993) The contribution of the anterior thalamic nuclei to anterograde amnesia. Neuropsychologia 31:1001–1019

    Article  PubMed  CAS  Google Scholar 

  • Aggleton JP, Desimone R, Mishkin M (1986) The origin, course, and termination of the hippocampo-thalamic projections in the macaque. J Comp Neurol 243:409–421

    Article  PubMed  CAS  Google Scholar 

  • Aggleton JP, McMackin D, Carpenter K, Hornak J, Kapur N, Halpin S, Wiles CM, Kamel H, Brennan P, Gaffan D (2000) Differential effects of colloid cysts in the third ventricle that spare or compromise the fornix. Brain 123:800–815

    Article  PubMed  Google Scholar 

  • Amaral DG, Cowan WM (1980) Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol 189:573–591

    Article  PubMed  CAS  Google Scholar 

  • Bachevalier J, Parkinson JK, Mishkin M (1985) Visual recognition in monkeys: effects of separate vs. combined transection of fornix and amygdalofugal pathways. Exp Brain Res 57:554–561

    PubMed  CAS  Google Scholar 

  • Bentivoglio M, Kultas-Ilinsky K, ilinsky I (1993) Limbic thalamus: structure, intrinsic organisation, and connections. In: Vogt BA, Gabriel M (eds) Neurobiology of the cingulate cortex and limbic thalamus. Birkhauser, Boston, pp 71–122

    Google Scholar 

  • Beracochea DJ, Jaffard R, Leonard LE (1989) Effects of anterior or dorsomedial thalamic lesions on learning and memory in rats. Behav Neural Biol 51:364–376

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Griffing K, Braak E (1997) Neuroanatomy of Alzheimer’s disease. Alzh Res 3:235–247

    Google Scholar 

  • Brodman K (1909) Vergleichende Lakalisationslehre der Grosshirnrinde: in ihren Prinzipien dargestellt anf Grund des Zellenbaues. Verlag von Johann Ambrosisus Barth, Leipzig

    Google Scholar 

  • Brown MW, Wilson FAW, Riches P (1987) Neuronal evidence that inferomedial temporal cortex is more important than hippocampus in certain processes underlying recognition memory. Brain Res 409:158–162

    Article  PubMed  CAS  Google Scholar 

  • Byatt G, Dalrymple-Alford JC (1996) Both anteromedial and anteroventral thalamic lesions impair radial-maze learning in rats. Behav Neurosci 110:1335–1348

    Article  PubMed  CAS  Google Scholar 

  • Cramon DY, von Hebel N, Schuri U (1985) A contribution to the anatomical basis of thalamic amnesia. Brain 108:993–1008

    Article  PubMed  Google Scholar 

  • Daitz HM, Powell TPS (1954) Studies of the connexions of the fornix system. J Neurol Neurosurg Psychiatry 17:75–82

    Article  PubMed  CAS  Google Scholar 

  • Delay J, Brion S (1969) Le syndrome de Korsakoff. Masson, Paris

    Google Scholar 

  • Gaffan D (1992) The role of the hippocampus-fornix-mammillary system in episodic memory. In: Squire LR, Butters N (eds) Neuropsychology of memory, 2nd edn. Guilford Press, New York, pp 336–346

    Google Scholar 

  • Gaffan D, Gaffan EA (1991) Amnesia in man following transection of the fornix. Brain 114:2611–2618

    Article  PubMed  Google Scholar 

  • Gaffan D, Parker A (1996) Interaction of perirhinal cortex with the fornix-fimbria: memory for objects and “object-in-place” memory. J Neurosci 16:5864–5869

    PubMed  CAS  Google Scholar 

  • Goulet S, Dore FY, Murray EA (1998) Aspiration lesions of the amygdala disrupt the rhinal corticothalamic projection system in rhesus monkeys. Exp Brain Res 119:131–140

    Article  PubMed  CAS  Google Scholar 

  • Gower EC (1989) Efferent projections from limbic cortex of the temporal pole to the magnocellular medial dorsal nucleus in the rhesus monkey. J Comp Neurol 280:343–358

    Article  PubMed  CAS  Google Scholar 

  • Graf-Radford N R, Tranel D, van Hoesen GW, Brandt JP (1990) Diencephalic amnesia. Brain 113:1–25

    Article  PubMed  Google Scholar 

  • Harding A, Halliday G, Caime D, Kril J (2000) Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain 123:141–154

    Article  PubMed  Google Scholar 

  • Hardy H, Heimer L (1977) A safer and more sensitive substitute for diaminobenzidene in the light microscopic demonstration of retrograde and anterograde transport of HRP. Neurosci Lett 5:235–240

    Article  CAS  PubMed  Google Scholar 

  • Hodges JR, Carpenter K (1991) Anterograde amnesia with fornix damage following removal of IIIrd ventricle colloid cyst. J Neurol Neurosurg Psychiatry 54:633–638

    PubMed  CAS  Google Scholar 

  • Hunt PR, Aggleton JP (1998a) An examination of the spatial working memory deficit following neurotoxic medial dorsal thalamic lesions in rats. Behav Brain Res 97:129–141

    Article  PubMed  CAS  Google Scholar 

  • Hunt PR, Aggleton JP (1998b) Neurotoxic lesions of the dorsomedial thalamus impair the acquisition but not the performance of delayed matching to place by rats: a deficit in shifting response rules. J Neurosci 18:10045–10052

    PubMed  CAS  Google Scholar 

  • Insausti R, Amaral DG, Cowan WM (1987) The entorhinal cortex of the monkey: III Subcortical afferents. J Comp Neurol 264:396–408

    Article  PubMed  CAS  Google Scholar 

  • Keizer K, Kuypers HGJM, Huisman AM, Dann O (1983) Diamidino yellow dihydrochloride (DY.2HCL); a new fluorescent retrograde neuronal tracer which migrates only very slowly out of the cell. Exp Brain Res 51:179–191

    Article  PubMed  CAS  Google Scholar 

  • Klingler J, Gloor P (1960) The connections of the amygdala and the anterior temporal cortex in the human brain. J Comp Neurol 115:333–369

    Article  PubMed  CAS  Google Scholar 

  • Krayniak PF, Siegel A, Meibach RC, Fruchtman D, Scrimenti M (1979) Origin of the fornix system in the squirrel monkey. Brain Res 160:401–411

    Article  PubMed  CAS  Google Scholar 

  • Kuypers HGJM, Bentivoglio M, Catsman-Berrevoets CE, Bharos AT (1980) Double retrograde neuronal labeling through divergent axon collaterals using two fluorescent tracers with the same excitation wavelength which label different features of the cell. Exp Brain Res 40:383–392

    Article  PubMed  CAS  Google Scholar 

  • Leonard BW, Amaral DG, Squire LR, Zola-Morgan S (1995) Transient memory impairment in monkeys with bilateral lesions of the entorhinal cortex. J Neurosci 15:5637–5659

    PubMed  CAS  Google Scholar 

  • Lorente de No R (1934) Studies on the structure of the cerebral cortex. II continuations of the study of the ammonic system. J Psychol Neurol (Leipzig) 46:113–177

    Google Scholar 

  • Malkova L, Bachevalier J, Mishkin M, Saunders RC (2001) Neurotoxic lesions of perirhinal cortex impair visual recognition memory in rhesus monkeys. NeuroReport 12:1913–1917

    Article  PubMed  CAS  Google Scholar 

  • Meibach RC, Siegel A (1977) Thalamic projections of the hippocampal formation: evidence for an alternative pathway involving the internal capsule. Brain Res 134:1–12

    Article  PubMed  CAS  Google Scholar 

  • Mesulam M-M (1978) Tetramethyl benzidene for horseradish peroxidase neurohistochemistry: A noncarcinogenic blue reaction-product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117

    PubMed  CAS  Google Scholar 

  • Meunier M, Bachevalier J, Mishkin M, Murray EA (1993) Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci 12:5418–5432

    Google Scholar 

  • Mishkin M (1978) Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature 273:297–298

    Article  PubMed  CAS  Google Scholar 

  • Mizumori SJY, Williams JD (1993) Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats. J Neurosci 13:4015–4028

    PubMed  CAS  Google Scholar 

  • Mizumori SJY, Miya DY, Ward KE (1994) Reversible inactivation of the lateral dorsal thalamus disrupts hippocampal place representation and impairs spatial learning. Brain Res 644:168–174

    Article  PubMed  CAS  Google Scholar 

  • Murray EA (1992) Medial temporal lobe structures contributing to recognition memory: the amygdaloid complex versus the rhinal cortex. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley–Liss, New York, pp 453–470

    Google Scholar 

  • Murray EA, Mishkin M (1998) Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J Neurosci 18:6568–6582

    PubMed  CAS  Google Scholar 

  • Nauta WJH (1961) Fibre degeneration following lesions of the amygdaloid complex in the monkey. J Anatomy 95:515–532

    CAS  Google Scholar 

  • Olszewski I (1952) The thalamus of the Macaca mulatta. S Karger, Basel

    Google Scholar 

  • Parker A, Gaffan D (1997) The effects of anterior thalamic and cingulate cortex lesions on ″object-in-place″ memory in monkeys. Neuropsychologia 35:1093–1102

    Article  PubMed  CAS  Google Scholar 

  • Poletti CE, Cresswell G (1977) Fornix system efferent projections in the squirrel monkey: an experimental degeneration study. J Comp Neurol 175:101–128

    Article  PubMed  CAS  Google Scholar 

  • Powell EW (1973) Limbic projections to the thalamus of the monkey. J Neurophysiol 4:514–531

    Google Scholar 

  • Rosene D, Roy NJ, Davis BJ (1986) A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. J Histochem Cytochem 34:1301–1315

    PubMed  CAS  Google Scholar 

  • Russchen FT, Amaral DG, Price JL (1987) The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey Macaca fascicularis. J Comp Neurol 256:175–210

    Article  PubMed  CAS  Google Scholar 

  • Saleem KS, Tanaka K (1996) Divergent projections from the anterior inferotemporal area TE to the perirhinal and entorhinal cortices in macaque monkey. J Neurosci 16:4757–4775

    PubMed  CAS  Google Scholar 

  • Saunders RC, Rosene DL (1988) A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I Convergence in the entorhinal, prorhinal, and perirhinal cortices. J Comp Neurol 271:153–184

    Article  PubMed  CAS  Google Scholar 

  • Shibata H (1996) Direct projections from the entorhinal area to the anteroventral and laterodorsal thalamic nuclei in the rat. Neurosci Res 26:83–87

    PubMed  CAS  Google Scholar 

  • Suzuki WA (1996) Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: organization of cortical inputs and interconnections with amygdala and striatum. Sem Neurosci 8:3–12

    Article  Google Scholar 

  • Suzuki WA, Amaral DG (1994) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14:1856–1877

    PubMed  CAS  Google Scholar 

  • Suzuki WA, Amaral DG (2003) Where are the perirhinal and parahippocampal cortices? A historical overview of the nomenclature and boundaries applied to the primate medial temporal lobe. Neuroscience 120:893–906

    Article  PubMed  CAS  Google Scholar 

  • Suzuki WA, Zola-Morgan S, Squire LR, Amaral DG (1993) Lesions of the perirhinal and parahippocampal cortices in the monkey produce long-lasting memory impairment in the visual and tactual modalities. J Neurosci 13:2430–2451

    PubMed  CAS  Google Scholar 

  • Van Groen T, Wyss JM (1990) The connections of the presubiculum and parasubiculum in the rat. Brain Res 518:227–243

    Article  PubMed  CAS  Google Scholar 

  • Van Groen T, Kadish I, Wyss JM (2002) The role of the laterodorsal nucleus of the thalamus in spatial learning and memory in the rat. Behav Brain Res 136:329–337

    Article  PubMed  Google Scholar 

  • Van der Werf YD, Witter MP, Uylings HBM, Jolles J (2000) Neuropsychology of infarctions in the thalamus: a review. Neuropsychologia 38:613–627

    Article  PubMed  CAS  Google Scholar 

  • Van der Werf YD, Scheltens P, Lindeboom J, Witter MP, Uylings HBM, Jolles J (2003) Deficits of memory executive functioning and attention following infarctions in the thalamus; a study of 22 cases with localised lesions. Neuropsychologia 41:1330–1344

    Article  PubMed  Google Scholar 

  • Van der Werf YD, Jolles J, Witter MP, Uylings HBM (2003) Contributions of thalamic nuclei to declarative memory functioning. Cortex 39:1047–1062

    PubMed  Google Scholar 

  • Vann SD, Aggleton JP (2004) The mammillary bodies—two memory systems in one? Nat Rev Neurosci 5:35–44

    Article  PubMed  CAS  Google Scholar 

  • Warburton EC, Morgan A, Baird A, Muir JL, Aggleton JP (2001) The conjoint importance of the hippocampus and anterior thalamic thalamic nuclei for allocentric spatial learning: evidence from a disconnection study in the rat. J Neurosci 21:7323–7330

    PubMed  CAS  Google Scholar 

  • Whitlock DG, Nauta WJH (1956) Subcortical projections from the temporal neocortex in Macaca mulatta. J Comp Neurol 106:183–212

    Article  PubMed  Google Scholar 

  • Witter MP (2002) The parahippocampal region: past, present, and future. In Witter M, Wouterlood F (eds) The parahippocampal region. Oxford University Press, Oxford, pp 3–19

    Google Scholar 

  • Witter M, Wouterlood F (2002) The parahippocampal region. Oxford University Press, Oxford

  • Yeterian EH, Pandya DN (1988) Corticothalamic connections of paralimbic regions in the rhesus monkey. J Comp Neurol 269:130–146

    Article  PubMed  CAS  Google Scholar 

  • Zola-Morgan S, Squire LR (1985) Amnesia in monkeys after lesions of the mediodorsal nucleus of the thalamus. Ann Neurol 17:558–564

    Article  PubMed  CAS  Google Scholar 

  • Zola-Morgan S, Squire LR, Amaral DG (1989a) Lesions of the hippocampal formation but not lesions of the fornix or the mammillary nuclei produce long-lasting memory impairment in monkeys. J Neurosci 9:898–913

    PubMed  CAS  Google Scholar 

  • Zola-Morgan S, Squire LR, Amaral DG, Suzuki WA (1989b) Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci 9:4355–4370

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Lorraine Woods for helping to prepare the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Aggleton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saunders, R.C., Mishkin, M. & Aggleton, J.P. Projections from the entorhinal cortex, perirhinal cortex, presubiculum, and parasubiculum to the medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques. Exp Brain Res 167, 1–16 (2005). https://doi.org/10.1007/s00221-005-2361-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-2361-3

Keywords

Navigation