Skip to main content
Log in

Impact of headspace oxygen and copper and iron addition on oxygen consumption rate, sulphur dioxide loss, colour and sensory properties of Riesling wine

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Oxygen ingress at bottling is crucial for the wine development during storage. Iron and copper are known to catalyse the oxidation processes in wines. The aim of the present study was to evaluate the impact of oxygen, and iron and copper addition on changes in analytical and sensory parameters during storage. A Riesling wine was bottled with various oxygen concentrations determined by the headspace volume in the bottle (0, 10 and 20 mL) full with ambient air. Iron (1 mg/L) and copper (0.5 mg/L) were added to 50 % of the bottles. Headspace and dissolved oxygen, free and total SO2 and colour were monitored during 3 months post-bottling. Descriptive sensory evaluation took place in the end of the observation period. Fe and Cu addition had significant influence on the oxygen consumption rate, on the loss of SO2 during storage, and on the sensory changes in wine. Initial headspace volume additionally made significant impact on the evolution of the sulphur dioxide and on the sensory profile of bottled wines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dimkou E, Ugliano M, Dieval JB, Vidal S, Aagaard O, Rauhut D, Jung R (2011) Impact of headspace oxygen and closure on sulfur dioxide, color, and hydrogen sulfide levels in a Riesling wine. Am J Enol Viticul 62(3):261–269. doi:10.5344/ajev.2011.11006

    Article  Google Scholar 

  2. Karbowiak T, Gougeon RD, Alinc J-B, Brachais L, Debeaufort F, Voilley A, Chassagne D (2009) Wine oxidation and the role of cork. Crit Rev Food Sci Nutr 50(1):20–52. doi:10.1080/10408390802248585

    Article  Google Scholar 

  3. Morozova K, Schmidt O (2012) Comparison of different methods for O2 and CO2 measurement in wine. Mitteilungen Klosterneuburg 62(3):14

    Google Scholar 

  4. Ribereau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2006) Handbook of enology—the chemistry of wine, stabilization and treatments 2006, vol 2. Wiley

  5. Kostic D, Mitic S, Miletic G, Despotovic S, Zarubica A (2010) The concentrations of Fe, Cu and Zn in selected wines from South-East Serbia. J Serb Chem Soc 75(12):1701–1709. doi:10.2298/jsc100104133k

    Article  CAS  Google Scholar 

  6. Almeida CM, Vasconcelos MT (2003) Multielement composition of wines and their precursors including provenance soil and their potentialities as fingerprints of wine origin. J Agric Food Chem 51(16):4788–4798. doi:10.1021/jf034145b

    Article  CAS  Google Scholar 

  7. Taylor VF, Longerich HP, Greenough JD (2003) Multielement analysis of Canadian wines by inductively coupled plasma mass spectrometry (ICP-MS) and multivariate statistics. J Agric Food Chem 51(4):856–860. doi:10.1021/jf025761v

    Article  CAS  Google Scholar 

  8. Pohl P (2007) What do metals tell us about wine? Trends Anal Chem 26:941–949. doi:10.1016/j.trac.2007.07.005

    Article  CAS  Google Scholar 

  9. Volpe MG, La Cara F, Volpe F, De Mattia A, Serino V, Petitto F, Zavalloni C, Limone F, Pellecchia R, De Prisco PP, Di Stasio M (2009) Heavy metal uptake in the enological food chain. Food Chem 117(3):553–560. doi:10.1016/j.foodchem.2009.04.033

    Article  CAS  Google Scholar 

  10. Galani-Nikolakaki S, Kallithrakas-Kontos N, Katsanos AA (2002) Trace element analysis of Cretan wines and wine products. Sci Total Environ 285(1–3):155–163. doi:10.1016/s0048-9697(01)00912-3

    Article  CAS  Google Scholar 

  11. Kment P, Mihaljevič M, Ettler V, Šebek O, Strnad L, Rohlová L (2005) Differentiation of Czech wines using multielement composition—a comparison with vineyard soil. Food Chem 91(1):157–165. doi:10.1016/j.foodchem.2004.06.010

    Article  CAS  Google Scholar 

  12. Eschnauer H (1982) Trace elements in must and wine: primary and secondary contents. Am J Enol Viticul 33:226–230

    CAS  Google Scholar 

  13. Wurzinger A, Netzer M, Heili K, Bandion F (1994) Investigation and evaluation of bentonite [in enology]. Mitteilungen Klosterneuburg 44:146–149

    CAS  Google Scholar 

  14. Nicolini G, Larcher R, Pangrazzi P, Bontempo L (2004) Changes in the contents of micro- and trace-elements in wine due to winemaking treatments. Vitis 43:41–45

    CAS  Google Scholar 

  15. Catarino S, Madeira M, Monteiro F, Rocha F, Curvelo-Garcia A, de Sousa RB (2007) Effect of bentonite characteristics on the elemental composition of wine. J Agric Food Chem 56(1):158–165

    Article  Google Scholar 

  16. Tamura T, Taniguchi K, Suzuki Y, Okubo T, Takata R, Konno T (2009) Iron is an essential cause of fishy aftertaste formation in wine and seafood pairing. J Agric Food Chem 57(18):8550–8556

    Article  CAS  Google Scholar 

  17. Li H, Guo A, Wang H (2008) Mechanisms of oxidative browning of wine. Food Chem 108(1):1–13

    Article  CAS  Google Scholar 

  18. Schmidt O (2001) Kupfer als Behandlungsmittel. Wiegen die Vorteile die Nachteile auf? Rebe und Wein 54(9):20–23

    Google Scholar 

  19. Danilewicz JC (2011) Mechanism of autoxidation of polyphenols and participation of sulfite in wine: key role of iron. Am J Enol Viticul 62(3):319–328. doi:10.5344/ajev.2011.10105

    Article  CAS  Google Scholar 

  20. Danilewicz JC (2007) Interaction of sulfur dioxide, polyphenols, and oxygen in a wine-model system: central role of iron and copper. Am J Enol Viticul 58(1):53–60

    CAS  Google Scholar 

  21. Danilewicz JC (2003) Review of reaction mechanisms of oxygen and proposed intermediate reduction products in wine: central role of iron and copper. Am J Enol Viticul 54(2):73–85

    CAS  Google Scholar 

  22. Singleton VL (1987) Oxygen with phenols and related reactions in musts, wines, and model systems: observations and practical implications. Am J Enol Viticul 38(1):69–77

    CAS  Google Scholar 

  23. Danilewicz JC (2013) Reactions involving iron in mediating catechol oxidation in model wine. Am J Enol Viticul 64(3):316–324. doi:10.5344/ajev.2013.12137

    Article  CAS  Google Scholar 

  24. Clark AC, Dias DA, Smith TA, Ghiggino KP, Scollary GR (2011) Iron(III) tartrate as a potential precursor of light-induced oxidative degradation of white wine: studies in a model wine system. J Agric Food Chem 59(8):3575–3581. doi:10.1021/jf104897z

    Article  CAS  Google Scholar 

  25. Siegmund H, Bächmann K (1977) Die Lagezuordnung von Weinen durch Bestimmung des Spurenelementmusters. Zeitschrift für Lebensmittel-Untersuchung und Forschung 164(1):1–7

    Article  CAS  Google Scholar 

  26. Eschnauer H, Neeb R (1988) Micro-element analysis in wine and grapes. IWine analysis. Springer, Berlin, pp 67–91

    Google Scholar 

  27. Henze G, Bauer K-H (2004) Spurensuche im Wein: Mit Voltammetrie. Chem unserer Zeit 38(1):46–54. doi:10.1002/ciuz.200400290

    Article  CAS  Google Scholar 

  28. Nikfardjam MP (2010) Eisen und Kupfer—Starke Oxidantien im Wein. Das Deutsche Weinmagazin 17(25):32–34

    Google Scholar 

  29. Godden P, Francis L, Field J, Gishen M, Coulter A, Valente P, Høj P, Robinson E (2001) Wine bottle closures: physical characteristics and effect on composition and sensory properties of a Semillon wine 1. Performance up to 20 months post-bottling. Aust J Grape Wine Res 7(2):64–105. doi:10.1111/j.1755-0238.2001.tb00196.x

    Article  CAS  Google Scholar 

  30. Godden P, Lattey K, Francis L, Gishen M, Cowey G, Holdstock M, Robinson E, Waters E, Skouroumounis G, Sefton M (2005) Towards offering wine to the consumer in optimal condition—the wine, the closures and other packaging variables. A review of AWRI research examining the changes that occur in wine after bottling. Wine Ind J 20:20–30

    Google Scholar 

  31. Kwiatkowski MJ, Skouroumounis GK, Lattey KA, Waters EJ (2007) The impact of closures, including screw cap with three different headspace volumes, on the composition, colour and sensory properties of a Cabernet Sauvignon wine during two years’ storage. Aust J Grape Wine Res 13(2):81–94

    Article  CAS  Google Scholar 

  32. Dimkou E, Ugliano M, Dieval JB, Vidal S, Jung R (2013) Impact of dissolved oxygen at bottling on sulfur dioxide and sensory properties of a Riesling wine. Am J Enol Viticul. doi:10.5344/ajev.2013.12112

    Google Scholar 

  33. OIV (2008) Compendium of international methods of analysis of wines and musts, vol 1

  34. Würdig G, Woller R, Breitbach K (1989) Chemie des Weines. Ulmer, Stuttgart

    Google Scholar 

  35. Vidal JC, Moutounet M (2006) Monitoring of oxygen in the gas and liquid phases of bottles of wine at bottling and during storage. J Int Des Sci De La Vigne Et Du Vin 40(1):35–45

    CAS  Google Scholar 

  36. Kontoudakis N, Biosca P, Canals R, Fort F, Canals JM, Zamora F (2008) Impact of stopper type on oxygen ingress during wine bottling when using an inert gas cover. Aust J Grape Wine Res 14(2):116–122. doi:10.1111/j.1755-0238.2008.00013.x

    Article  CAS  Google Scholar 

  37. Huber C (2006) Instruction manual Fibox 3-trace v3. PreSens GmbH, Regensburg

    Google Scholar 

  38. OIV (2013) Compendium of international methods of wine and must analysis. Edition 2013. OIV, Paris, France

  39. C.I.E (1986) Colorimetry, commission internationale de l’Eclairage, 15.2. Edition 2. Wien

  40. Vidal J-C, Bruno G, Cécile C (2011) Oxygen transmission rate of screwcaps by chemoluminescence and air/capsule/headspace/acidified water system. Bull de l’OIV 84(962–964):189–198

    Google Scholar 

  41. Danilewicz JC, Seccombe JT, Whelan J (2008) Mechanism of interaction of polyphenols, oxygen, and sulfur dioxide in model wine and wine. Am J Enol Viticul 59(2):128–136

    CAS  Google Scholar 

  42. Danilewicz JC, Wallbridge PJ (2010) Further studies on the mechanism of interaction of polyphenols, oxygen, and sulfite in wine. Am J Enol Viticul 61(2):166–175

    CAS  Google Scholar 

  43. Darriet P, Bouchilloux P, Poupot C, Bugaret Y, Clerjeau M, Sauris P, Medina B, Dubourdieu D (2001) Effects of copper fungicide spraying on volatile thiols of the varietal aroma of Sauvignon blanc, Cabernet Sauvignon and Merlot wines. Vitis 40(2):93–100

    CAS  Google Scholar 

  44. Ugliano M, Kwiatkowski M, Vidal S, Capone D, Siebert T, Dieval JB, Aagaard O, Waters EJ (2011) Evolution of 3-mercaptohexanol, hydrogen sulfide, and methyl mercaptan during bottle storage of Sauvignon blanc wines. Effect of glutathione, copper, oxygen exposure, and closure-derived oxygen. J Agric Food Chem 59(6):2564–2572. doi:10.1021/jf1043585

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the German Academic Exchange Service (DAAD—Deutsche Akademische Austauschdienst). We would like to thank Sonja Schlosser and the staff of Landesanstalt für Landwirtschaftliche Chemie, University of Hohenheim, for the ICP analyses. We gratefully acknowledge the staff of the LVWO Weinsberg for the assistance in realisation of this project.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksenia Morozova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozova, K., Schmidt, O. & Schwack, W. Impact of headspace oxygen and copper and iron addition on oxygen consumption rate, sulphur dioxide loss, colour and sensory properties of Riesling wine. Eur Food Res Technol 238, 653–663 (2014). https://doi.org/10.1007/s00217-013-2142-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-013-2142-3

Keywords

Navigation