Skip to main content
Log in

Characterization of nutrient, organic carbon, and sediment loads and concentrations from the Mississippi River into the northern Gulf of Mexico

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We synthesize and update the science supporting the Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2001) with a focus on the spatial and temporal discharge and patterns of nutrient and organic carbon delivery to the northern Gulf of Mexico, including data through 2006. The discharge of the Mississippi River watershed over 200 years varies but is not demonstrably increasing or decreasing. About 30% of the Mississippi River was shunted westward to form the Atchafalaya River, which redistributed water and nutrient loads on the shelf. Data on nitrogen concentrations from the early 1900s demonstrate that the seasonal and annual concentrations in the lower river have increased considerably since then, including a higher spring loading, following the increase in fertilizer applications after World WarII. The loading of total nitrogen (TN) fell from 1990 to 2006, but the loading of total phosphorus (TP) has risen slightly, resulting in a decline in the TN:TP ratios. The present TN:TP ratios hover around an average indicative of potential nitrogen limitation on phytoplankton growth, or balanced growth limitation, but not phosphorus limitation. The dissolved nitrogen:dissolved silicate ratios are near the Redfield ratio indicative of growth limitations on diatoms. Although nutrient concentrations are relatively high compared to those in many other large rivers, the water quality in the Mississippi River is not unique in that nutrient loads can be described by a variety of land-use models. There is no net removal of nitrogen from water flowing through the Atchafalaya basin, but the concentrations of TP and suspended sediments are lower at the exit point (Morgan City, Louisiana) than in the water entering the Atchafalaya basin. The removal of nutrients entering offshore waters through diversion of river water into wetlands is presently less than 1% of the total loadings going directly offshore, and would be less than 8% if the 10,093 km2 of coastal wetlands were successfully engineered for that purpose. Wetland loss is an insignificant contribution to the carbon loading offshore, compared to in situ marine production. The science-based conclusions in the Action Plan about nutrient loads and sources to the hypoxic zone off Louisiana are sustained by research and monitoring occurring in the subsequent 10 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alexander, R. B. andR. A. Smith. 2006. Trends in the nutrient enrichment of U.S. rivers during the late 20th century and their relation to changes in probable stream trophic conditions.Limnology and Oceanography 51:639–654.

    CAS  Google Scholar 

  • Alexander, R. B., R. A. Smith, andG. E. Schwarz. 2000. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico.Nature 403:758–761.

    Article  CAS  Google Scholar 

  • Arbuckle, K. E. andJ. A. Downing. 2001. The influence of watershed land use on lake N:P in a predominantly agricultural landscape.Limnology and Oceanography 46:970–975.

    Google Scholar 

  • Aulenbach, B. T., H. T. Buxton, W. A. Battaglin, and R. H. Coupe. 2007. Streamflow and Nutrient Fluxes of the Mississippi-Atchafalaya River Basin and Subbasins for the Period of Record Through 2005. U.S. Geological Survey Open-File Report 2007-1080. Denver, Colorado, (http://toxics.usgs.gov/pubs/of-2007-1080).

  • Baumann, R. H. andR. E. Turner. 1990. Direct impacts of outer continental shelf activities on wetland loss in the central Gulf of Mexico.Environmental Geology and Water Resources 15:189–198.

    Article  Google Scholar 

  • Benner, R. andS. Opsahl. 2001. Molecular indicators of the sources and transformations of dissolved organic matter in the Mississippi River plume.Organic Geochemistry 32:597–611.

    Article  CAS  Google Scholar 

  • Bianchi, T. S., T. Filley, K. Dria, andP. G. Hatcher. 2004. Temporal variability in sources of dissolved organic carbon in the lower Mississippi River.Geochimica et Cosmochimica Acta 68: 959–967.

    Article  CAS  Google Scholar 

  • Bianchi, T. S., S. Mitra, andB. A. McKee. 2002. Sources of terrestrially-derived organic carbon in lower Mississippi River and Louisiana shelf sediments. Implications for differential sedimentation and transport at the coastal margin.Marine Chemistry 77:211–223.

    Article  CAS  Google Scholar 

  • Boyer, E. W., C. L. Goodale, N. A. Jaworski, andR. W. Howarth. 2002. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA.Biogeochemistry 57:137–169.

    Article  Google Scholar 

  • Caraco, N. F. 1995. Influence of human populations on P transfers to aquatic systems: A regional scale study using large rivers, p. 235–247.In H. Tiessen (ed.), Phosphorus in the Global Environment. SCOPE 54. John Wiley and Sons Ltd., New York.

    Google Scholar 

  • Caraco, N. F. andJ. J. Cole. 1999. Human impact on nitrate export: An analysis using major world rivers.Ambio 28:167–170.

    Google Scholar 

  • Cohn, T. A., D. L. Caulder, E. J. Gilroy, L. D. Zynjuk, andR. M. Summers. 1992. The validity of a simple statistical model for estimating fluvial constituent loads: An empirical study involving nutrient loads entering Chesapeake Bay.Water Resources Research 28:2353–2363.

    Article  CAS  Google Scholar 

  • Curtis, W. F., J. K. Culbertson, and E. B. Chase. 1973. Fluvialsediment discharge to the oceans from the conterminous United States. U.S. Geological Survey Circular 670. Washington, D.C.

  • Dagg, M. J., T. S. Bianchi, G. Breed, W. Cai, S. Duan, H. Liu, B. A. McKee, R. T. Powell, andC. M. Stewart. 2005. Biogeochemical characteristics of the lower Mississippi River USA during June 2003.Estuaries 28:664–674.

    CAS  Google Scholar 

  • Demas, C. andP. Curwick. 1988. Suspended sediment and associated chemical transport characteristics of the lower Mississippi River, Louisiana. Technical Report 45. Louisiana Department of Water Research, Baton Rouge, Louisiana.

    Google Scholar 

  • Dodds, W. K. 2003. Misuse of inorganic N and soluble reactive P concentrations to indicate nutrient status of surface water.Journal of the North American Benthological Society 22:171–181.

    Article  Google Scholar 

  • Dole, R. B. and H. Stabler. 1909. Denudation, p. 78–93.In Papers on the Conservation of Water Resources. U.S. Geological Survey Water-Supply Paper 234. Washington, D.C.

  • Donner, S. D. 2003. The impact of cropland cover on river nutrient levels in the Mississippi River basin.Global Ecology and Biogeography 12:341–355.

    Article  Google Scholar 

  • Donner, S. D., M. T. Coe, J. D. Lenters, T. E. Twine, andJ. A. Foley. 2002. Modeling the impact of hydrological changes on nitrate transport in the Mississippi River Basin from 1955 to 1994.Global Biogeochemical Cycles 16: 10.10292001GB001396.

    Article  CAS  Google Scholar 

  • Donner, S. D. andC. J. Kucharik. 2003a. Evaluating the impacts of land management and climate variability on crop production and nitrate export across the Upper Mississippi Basin.Global Biogeochemical Cycles 17:1043, doi:10.1029/2001GB001396.

    Article  CAS  Google Scholar 

  • Donner, S. D. and C. J. Kucharik. 2003b. The distribution of the primary crops in the U.S. since 1950 and the relationship to river nutrient levels.Global Biogeochemical Cycles 17: 10.1029/ 2001GB1808.

  • Dortch, Q., N. N. Rabalais, R. E. Turner, andN. A. Qureshi. 2001. Impacts of changing Si/N ratios and phytoplankton species composition, p. 37–48.In N. N. Rabalais and R. E. Turner (eds.), Coastal Hypoxia: Consequences for living resources and ecosystems, Volume 58. American Geophysical Union, Washington D.C.

    Google Scholar 

  • Duan, S. andT. S. Bianchi. 2006. Seasonal changes in the abundance and composition of plant pigments in particulate organic carbon in the lower Mississippi and Pearl Rivers.Estuaries and Coasts 29:427–442.

    CAS  Google Scholar 

  • Dunn, D. D. 1996. Trends in Nutrient Inflows to the Gulf of Mexico from Streams Draining the Conterminous United States 1972–1993. U.S. Geological Survey, Water-Resources Investigations Report 96-4113. Prepared in cooperation with the U.S. Environmental Protection Agency, Gulf of Mexico Program, Nutrient Enrichment Issue Committee, U.S. Geological Survey, Austin, Texas.

    Google Scholar 

  • Fisk, H. N. 1952. Geological investigation of the Atchafalaya basin and the problems of Mississippi River diversion. Volume 1. U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi.

    Google Scholar 

  • Gedney, N., P. M. Cox, R. A. Betts, O. Boucher, C. Huntingford, andP. A. Stott. 2006. Detection of a direct carbon dioxide effect in continental river runoff records.Nature 439:835–838.

    Article  CAS  Google Scholar 

  • Goni, M. A., K. C. Ruttenberg, andT. I. Eglinton. 1997. Sources and contribution of terrigenous organic matter to surface sediments in the Gulf of Mexico.Nature 289:275–278.

    Article  Google Scholar 

  • Goni, M. A., K. C. Ruttenberg, andT. I. Eglinton. 1998. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico.Geochimica et Cosmochimica Acta 62:3055–3075.

    Article  CAS  Google Scholar 

  • Goolsby, D. A., W. A. Battaglin, B. T. Aulenbach, andR. P. Hooper. 2000. Nitrogen flux and sources in the Mississippi River.Science of the Total Environment 248:75–86.

    Article  CAS  Google Scholar 

  • Goolsby, D. A., W. A. Battaglin, G. B. Lawrence, R. S. Artz, B. T. Aulenbach, R. P. Hooper, D. R. Keeney, andG. J. Stensland. 1999. Flux and sources of nutrients in the Mississippi-Atchafalaya River basin. Topic 3 Report of the Integrated Assessment on Hypoxia in the Gulf of Mexico. National Oceanic and Atmospheric Administration Coastal Ocean Program Decision Analysis Series Number 17. NOAA Coastal Ocean Program, Silver Spring, Maryland.

    Google Scholar 

  • Gordon, E. A. andM. A. Goni. 2003. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico.Geochimica et Cosmochimica Acta 67:2359–2375.

    Article  CAS  Google Scholar 

  • Guildford, S. J. andR. E. Hecky. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship?Limnology and Oceanography 45: 1213–1223.

    CAS  Google Scholar 

  • Hooper, R. P., D. A. Goolsby, D. A. Rickert, and S. W. McKenzie. 1997. A river-basin perspective on monitoring water quality. U.S. Geological Survey Fact Sheet FS-055-97. Reston, Virginia.

  • Horowitz, A. J. 2003. An evaluation of sediment rating curves for estimating suspended sediment concentrations in subsequent flux calculations.Hydrologic Processes 17:3387–3409.

    Article  Google Scholar 

  • Howarth, R. W. 1998. An assessment of human influences on fluxes of nitrogen from the terrestrial landscape to the estuaries and continental shelves of the Atlantic Ocean.Nutrient Cycling in Agroecosystems 51:213–223.

    Article  Google Scholar 

  • Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, andZ. Zhao-Liang. 1996. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences.Biogeochemistry 35:75–139.

    Article  CAS  Google Scholar 

  • Howarth, R. W., E. W. Boyer, R. Marino, D. Swaney, N. Jaworski, andC. Goodale. 2006. The influence of climate on average nitrogen export from large watersheds in the northeastern United States.Biogeochemistry 79:163–186.

    Article  CAS  Google Scholar 

  • Jones, J. R., B. P. Borofka, andR. E. Bachmann. 1976. Factors affecting nutrient loads in some Iowa streams.Water Research 10: 117–122.

    Article  CAS  Google Scholar 

  • Jordan, T. E., D. L. Correll, andD. E. Weller. 1997. Relating nutrient discharges from watersheds to land use and streamflow variability.Water Resources Research 33:2579–2590.

    Article  CAS  Google Scholar 

  • Judson, S. andD. F. Ritter. 1964. Rates of denudation in the United States.Journal of Geophysical Research 69:3395–3401.

    Article  Google Scholar 

  • Justić, D., V. J. Bierman Jr.,D. Scavia, andR. Hetland. 2007. Forecasting Gulf’s Hypoxia: The next 50 years?Estuaries and Coasts 30:791–801.

    Google Scholar 

  • Justić, D., N. N. Rabalais, andR. E. Turner. 1995. Stoichiometric nutrient balance and origin of coastal eutrophication.Marine Pollution Bulletin 30:41–66.

    Article  Google Scholar 

  • Keown, M. P., E. A. Dardeau Jr., andE. M. Causey. 1986. Historic trends in the sediment flow regime of the Mississippi River.Water Resources Research 22:1555–1564.

    Article  Google Scholar 

  • Kesel, R. H. 1988. The decline in the suspended load of the lower Mississippi River and its influence on adjacent wetlands.Environmental Geology and Water Science 11:271–281.

    Article  Google Scholar 

  • Lurry, D. L. and D. D. Dunn. 1997. Trends in nutrient concentration and load for streams in the Mississippi River Basin, 1974–94. U.S. Geological Survey, Water-Resources Investigations Report 97-4223. Austin, Texas.

  • Malcom, R. L. andW. H. Durum. 1976. Organic carbon and nitrogen concentrations and annual organic carbon load of six selected rivers of the United States. United States Geological Survey Water-Supply PAPER 1817-F. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • McCabe, G. J., M. A. Palecki, andJ. L. Betancourt. 2004. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States.Proceedings of the National Academy of Sciences USA 101:4136–4141.

    Article  CAS  Google Scholar 

  • McCabe, G. J. and D. M. Wolock. 2002. A step increase in streamflow in the conterminous United States.Geophysical Research Letters 29: doi:10.1029/2002GL015999.

    Google Scholar 

  • McCoy, C., D. R. Corbett, B. A. McKee, andZ. Top. 2007. An evaluation of submarine groundwater discharge along the continental shelf of Louisiana using a multiple tracer approach.Journal of Geophysical Research —Oceans 112, C03013, doi: 10.1029/2006/2006JC003505.

    Article  CAS  Google Scholar 

  • McIsaac, G. F., M. B. David, G. Z. Gertner, andD. A. Goolsby. 2001. Eutrophication: Nitrate flux in the Mississippi River.Nature 414:166–167.

    Article  CAS  Google Scholar 

  • McIsaac, G. F., M. B. David, G. Z. Gertner, andD. A. Goolsby. 2002. Relating net nitrogen input in the Mississippi River basin to nitrate flux in the lower Mississippi River: A comparison of approaches.Journal of Environmental Quality 31:1610–1622.

    CAS  Google Scholar 

  • McIsaac, G. F. andX. Hu. 2004. Net N input and riverine N export from Illinois agricultural watersheds with and without extensive tile drainage.Biogeochemistry 70:251–271.

    Article  CAS  Google Scholar 

  • Meade, R. H. andR. S. Parker. 1985. Sediment in rivers of the United States, p. 49–60.In U.S. Geological Survey Water-Supply Paper 2275, National Water Summary 1984. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Milliman, J. D. andR. H. Meade. 1983. World-wide delivery of river sediment to the oceans.Journal of Geology 91:1–21.

    Article  Google Scholar 

  • Mississippi River/Gulf of Mexico Watershed Nutrient Task Force. 2001. Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico. Office of Wetlands, Oceans, and Watersheds, U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Mitsch, W. J., J. W. Day Jr.,J. W. Gilliam, P. M. Groffman, D. L. Hey, G. W. Randall, andN. Wang. 2001. Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River Basin: Strategies to counter a persistent ecological problem.BioScience 51:373–388.

    Article  Google Scholar 

  • Morton, T. A., J. C. Bernier, J. A. Barras, andN. F. Ferina. 2005. Rapid subsidence and historical wetland loss in the Mississippi Delta Plain: Likely causes and future implications. U.S. Geological Survey Open-File Report 2005-1215. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Mossa, J. 1996. Sediment dynamics in the lowermost Mississippi River.Engineering Geology 45:457–479.

    Article  Google Scholar 

  • Onstad, G. D., D. E. Canfield, P. D. Quay, andJ. L. Hedges. 2000. Sources of particulate organic matter in rivers from the continental USA: Lignin, phenol and stable carbon isotope compositions.Geochimica et Cosmochimica Acta 64:3539–3546.

    Article  CAS  Google Scholar 

  • Peierls, B., N. Caraco, M. Pace, andJ. Cole. 1991. Human influence on river nitrogen.Nature 350:386–387.

    Article  Google Scholar 

  • Perkins, B. D., K. Lohman, E. Van Nieuwenhuyse, andJ. R. Jones Jr. 1998. An examination of land cover and stream water quality among physiographic provinces of Missouri, U.S.A. Verh.International Vereinigung fur Limnologie 26:940–947.

    CAS  Google Scholar 

  • Poore, R. Z., J. Darling, H. J. Dowsett, and L. Wright. 2006. Variations in river flow to the Gulf of Mexico: Implications for paleoenvironmental studies of Gulf of Mexico marine sediments. U.S. Geological Survey, Reston, Virginia, http:// pubs.usgs.gov/bul/b2187/contents.html.

  • Rabalais, N. N. and R. E. Turner (eds.). 2001. Coastal hypoxia: Consequences for living resources and ecosystems. Coastal and Estuarine Studies Volume 58. American Geophysical Union, Washington, D.C.

  • Rabalais, N. N., R. E. Turner, andD. Scavia. 2002a. Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River.BioScience 52:129–142.

    Article  Google Scholar 

  • Rabalais, N. N., R. E. Turner, B. K. Sen Gupta, D. F. Boesch, P. Chapman, andM. C. Murrell. 2007. Hypoxia in the northern Gulf of Mexico: Does the science support the plan to reduce, mitigate, and control hypoxia?Estuaries and Coasts 30:753–772.

    CAS  Google Scholar 

  • Rabalais, N. N., R. E. Turner, andW. J. Wiseman Jr. 2002b. Hypoxia in the Gulf of Mexico, a.k.a. “The Dead Zone”.Annual Review of Ecology and Systematics 33:235–263.

    Article  Google Scholar 

  • Redfield, A. C. 1958. The biological control of chemical factors in the environment.American Scientist 46:205–222.

    CAS  Google Scholar 

  • Sklar, F. H. andR. E. Turner. 1981. Plankton production in the Louisiana coastal zone as influenced by the Mississippi River.Contributions in Marine Science 24:93–106.

    CAS  Google Scholar 

  • Smart, M. M., J. R. Jones, andJ. L. Sebaugh. 1985. Streamwatershed relations in the Missouri Ozark Plateau Province.Journal of Environmental Quality 14:77–82.

    Article  CAS  Google Scholar 

  • Smith, R. A., R. B. Alexander, and K. J. Lanfear. 1993. Stream water quality in the conterminous United States —Status and trends of selected indicators during the 1980s. USGS Water Supply Paper 2400, Washington, D.C.

  • Smith, S. V., R. O. Sleezer, W. H. Renwick, andR. W. Buddemeier. 2005. Fates of eroded soil organic carbon: Mississippi Basin case study.Ecological Applications 15:1929–1940.

    Article  Google Scholar 

  • Soileau, C. W., B. J. Garrett, andB. J. Thibodeaux. 1989. Drought induced saltwater intrusion of the Mississippi River, p. 2823–2836.In O. T. Magoon (ed.), Proceedings of the 6th. Symposium on Coastal Zone Management. American Society of Civil Engineers, New York.

    Google Scholar 

  • Sparks, R. E., J. C. Nelson, andY. Yin. 1998. Naturalization of the flood regimes in natural rivers: The case of the upper Mississippi River.BioScience 48:706–720.

    Article  Google Scholar 

  • Sutula, M., T. S. Bianchi, andB. McKee. 2004. Effect of seasonal sediment storage in the lower Mississippi River on the flux of reactive particulate phosphorus to the Gulf of Mexico.Limnology and Oceanography 49:2223–2235.

    Google Scholar 

  • Trefry, J. H., S. Metz, R. P. Trogine, andB. J. Eadie. 1994. Transport of particulate organic carbon by the Mississippi River and its fate in the Gulf of Mexico.Estuaries 17:839–849.

    Article  CAS  Google Scholar 

  • Trimble, S. W. 1999. Decreased rates of alluvial sediment storage in the Coon Creek Basin, Wisconsin, 1975–93.Science 285:1244–1246.

    Article  CAS  Google Scholar 

  • Turner, R. E. 1997. Wetland loss in the northern Gulf of Mexico: Multiple working hypotheses.Estuaries 20:1–13.

    Article  Google Scholar 

  • Turner, R. E. 1999a. Inputs and outputs of the Gulf of Mexico, p. 64–73.In H. Kumpf, K Steidinger, and K. Sherman (eds.), The Gulf of Mexico Large Marine Ecosystem. Blackwell Science, Oxford, U.K.

    Google Scholar 

  • Turner, R. E. 1999b. A comparative mass balance budget (C, N, P and suspended solids) for a natural swamp and overland flow systems, p. 61–71.In J. Vymazal (ed.), Nutrient Cycling and Retention in Natural and Constructed Wetlands. Backhuys Publishing Inc., Leiden, The Netherlands.

    Google Scholar 

  • Turner, R. E. 2004. Coastal wetland subsidence arising from local hydrologic manipulations.Estuaries 27:265–273.

    Article  Google Scholar 

  • Turner, R. E., N. Qureshi, N. N. Rabalais, Q. Dortch, D. Justić, R. Shaw, andJ. Cope. 1998. Fluctuating silicate:nitrate ratios and coastal plankton food webs.Proceedings of the National Academy of Sciences (USA) 95:13048–13051.

    Article  CAS  Google Scholar 

  • Turner, R. E. andN. N. Rabalais. 1991. Changes in the Mississippi River this century: Implications for coastal food webs.BioScience 41:140–147.

    Article  Google Scholar 

  • Turner, R. E. andN. N. Rabalais. 2003. Linking landscape and water quality in the Mississippi River Basin for 200 years.BioScience 53:563–572.

    Article  Google Scholar 

  • Turner, R. E. andN. N. Rabalais. 2004. Suspended sediment, C, N, P, and Si yields from the Mississippi River Basin.Hydrobiologia 511:79–89.

    Article  CAS  Google Scholar 

  • Turner, R. E., N. N. Rabalais, andD. Justić. 2006. Predicting summer hypoxia in the northern Gulf of Mexico: Riverine N, P and Si loading.Marine Pollution Bulletin 52:139–148.

    Article  CAS  Google Scholar 

  • Turner, R. E., N. N. Rabalais, D. Justić, andQ. Dortch. 2003a. Global patterns of dissolved silicate and nitrogen in large rivers.Biogeochemistry 64:297–317.

    Article  CAS  Google Scholar 

  • Turner, R. E., N. N. Rabalais, D. Justić, andQ. Dortch. 2003b. Future aquatic nutrient limitations.Marine Pollution Bulletin 46: 1032–1034.

    Article  CAS  Google Scholar 

  • Turner, R. E., N. N. Rabalais, D. Scavia, and G. F. McIsaac. 2007. Corn belt landscapes and the ecology of the Gulf of Mexico, p. 10–17.In J. I. Nassauer, M. V. Santelmann, and D. Scavia (eds.), From the Corn Belt to the Gulf: Ecological and Societal Implications of Alternative Agricultural Futures. Resources for the Future, Washington, D.C.

  • Turner, R. E., E. M. Swenson, and C. S. Milan, Organic and inorganic contributions to vertical accretion in salt marsh sediments, p. 583–595.In M. Weinstein and K. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishing, Dordrecht, Netherlands.

  • Turner, R. E., E. M. Swenson, C. S. Milan, andJ. M. Lee. 2007. Hurricane signals in salt marsh sediments: Inorganic sources and soil volume.Limnology and Oceanography 52:1231–1238.

    Article  CAS  Google Scholar 

  • U.S. Commission on Ocean Policy. 2004. An Ocean Blueprint for the 21st Century: Final report of the U.S. Commission on Ocean Policy, Washington, D.C.

  • U.S. Geological Survey. 2004. Nutrient load estimates for 2004. U.S. Geological Survey, Reston, Virginia, http://co.water.usgs. gov/hypoxia/html/nutrients_new.html.

  • Wiseman Jr.,W. J., N. N. Rabalais, R. E. Turner, andD. Justić. 2004. Hypoxia and the physics of the Louisiana Coastal Current, p. 359–372.In J. C. J. Nihoul, P. O. Zavialov, and P. O. Micklin (eds.), Dying and Dead Seas, NATO Advanced Research Workshop, Liége, Belgium, NATO ASI Series, Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Xu, Y. J. 2006. Organic nitrogen retention in the Atchafalaya river swamp.Hydrobiologia 560:133–143.

    Article  CAS  Google Scholar 

  • Zhang, Y.-K. andK. E. Schilling. 2006. Increasing streamflow and baseflow in Mississippi River since the 1940s: Effects of land use change.Journal of Hydrology 324:412–422.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, R.E., Rabalais, N.N., Alexander, R.B. et al. Characterization of nutrient, organic carbon, and sediment loads and concentrations from the Mississippi River into the northern Gulf of Mexico. Estuaries and Coasts: J ERF 30, 773–790 (2007). https://doi.org/10.1007/BF02841333

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02841333

Keywords

Navigation