Skip to main content
Log in

Hybridization homology: A new parameter for the analysis of phylogenetic relations, demonstrated with the urkingdom of the archaebacteria

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Ribosomal RNAs of 17 species of archaebacteria were hybridized to corresponding and non-corresponding nitrocellulose bound DNAs. The temperature stability of these hybrids and the amount of bound rRNA were determined.

A formula was derived to correct the hybridization yields for the different genome lengths and numbers of rRNA operons per genome. This correction made it possible to determine hybridization homologies, as functions of velocity constants, which could then be used in a similar way as sequence homologies.

The results were consistent with those from 16S rRNA total sequence data. No correlation was found between the hybridization homologies and the temperature stabilities of the hybrids.

This new method is faster and simpler than the method based on total 16S rRNA sequence determination although it provides less total information. Its application to archaebacterial phylogeny has shown theThermococcales to represent a third branch of the kingdom beside the branch of the methanogens + halophiles, and that of theThermoproteales + Sulfolobales. The method has also provided a detailed description of the phylogeny of theSulfolobales showing their origin within theThermoproteales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson LM, Young D (1985) Quantitative filter hybridisation in nucleic acid hybridisation. In: Hames B, Higgins SJ (eds) Nucleic acids hybridisation. IRL Press, Oxford, pp 74–111

    Google Scholar 

  • Baharaeen S, Melcher U, Vishniac HS (1983) Complementary DNA: 25S ribosomal RNA hybridization: an improved method for phylogenetic studies. Can J Microbiol 29:546–551

    PubMed  Google Scholar 

  • Bonner TI, Brenner DJ, Neufield BR, Britten RJ (1973) Reduction in the rate of DNA reassociation by sequence divergence. J Mol Biol 81:123–135

    Article  PubMed  Google Scholar 

  • De Ley J, De Smedt J (1975) Improvements of the membrane filter method for DNA: rRNA hybridization. Antonie van Leeuwenhoek 41:287–307

    PubMed  Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284

    PubMed  Google Scholar 

  • Garvie EI, Farrow JAE (1981) Sub-division within the genusStreptococcus using deoxyribonucleic acid: ribosomal ribonucleic acid hybridization. Zbl Bact Hyg I Orig C 2:299–310

    Google Scholar 

  • Giles KW, Myers A (1965) An improved diphenylamine method for the estimation of deoxyribonucleic acid. Nature 206:4979

    Google Scholar 

  • Hall BD, Spiegelman S (1961) Sequence complementarity of T2-DNA and T5-specific RNA. Proc Natl Acad Sci USA 47:137–146

    PubMed  Google Scholar 

  • Meijs WH, Schilperoort RA (1971) Determination of the amount of DNA on nitrocellulose membrane filters. FEBS Letters 12:166–168

    Article  PubMed  Google Scholar 

  • Moore RL, McCarthy BJ (1969) Base sequence homology and renaturation studies of the deoxyribonucleic acid of extremely halophilic bacteria. J Bacteriol 99:255–262

    PubMed  Google Scholar 

  • Mordarski M, Goodfellow M, Tkacz A, Pulverer G, Schaal KP (1980) Ribosomal ribonucleic acid similarities in the classification ofRhodococcus and related taxa. J Gen Microbiol 118:313–319

    PubMed  Google Scholar 

  • Morgan HW, Daniel RM (1982) Proceedings of the XIII international congress of microbiology, Boston, Mass, USA, August 1982

  • Neumann H, Gierl A, Tu J, Leibrock J, Staiger D, Zillig W (1983) Organization of the genes for ribosomal RNA in archaebacteria. Mol Gen Genet 192:66–72

    Article  Google Scholar 

  • Noller HF, Woese CR (1981) Secondary structure of 16S ribosomal RNA. Science 212:403–411

    PubMed  Google Scholar 

  • Schlotterbeck E (1984) DNS: rRNS Hybridisierung mit hilfein vitro markierter rRNS. Diploma Thesis, Technische Universität München

  • Silberklang H, Gillum AM, Rajbhandary UL (1979) Use of in vitro32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol 59G:58–109

    Google Scholar 

  • Tu J, Prangishvilli D, Huber H, Wildgruber G, Zillig W, Stetter KO (1982) Taxonomic relations between archaebacteria including 6 novel genera examined by cross hybridization of DNAs and 16S rRNAs. J Mol Evol 18:109–114

    Article  PubMed  Google Scholar 

  • Woese CR, Magrum LJ, Gupta RB, Siegel RB, Stahl DA, Kop J, Crawford N, Brosius J, Gutell R, Hogan J, Noller HF (1980) Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res 8:2275–2293

    PubMed  Google Scholar 

  • Woese CR, Olsen J (1986) Archaebacterial phylogeny: perspectives on the urkingdom. System Appl Microbiol 7:161–177

    Google Scholar 

  • Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) TheSulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269

    Article  Google Scholar 

  • Zillig W, Tu J, Holz I (1981)Thermoproteales—a third order of thermoacidophilic archaebacteria. Nature 293:85–86

    Article  PubMed  Google Scholar 

  • Zillig W, Holz I, Janekovic D, Schäfer W, Reiter W-D (1983) The archaebacteriumThermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. System Appl Microbiol 4:88–94

    Google Scholar 

  • Zillig W, Yeates S, Holz I, Böck A, Rettenberger M, Gropp F, Simon G (1986)Desulfurolobus ambivalens, sp. nov. gen. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. System Appl Microbiol 8:197–203

    Google Scholar 

  • Zillig W, Holz I, Klenk H-P, Trent J, Wunderl S, Janekovic D, Imsel E, Haas B (1987)Pyrococcus woesei, gen. nov. sp. nov, an extremely thermophilic marine archaebacterium, representing a novel order,Thermococcales. System Appl Microbiol (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klenk, H.P., Haas, B., Schwass, V. et al. Hybridization homology: A new parameter for the analysis of phylogenetic relations, demonstrated with the urkingdom of the archaebacteria. J Mol Evol 24, 167–173 (1986). https://doi.org/10.1007/BF02099964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099964

Key words

Navigation