Skip to main content
Log in

Models of coronal hole flows

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Models of plasma flow in a coronal hole fall naturally into four classes. These are: (i) radial flow on a streamline along which the divergence is assumed to vary differently than as the square of the radial distance from the Sun; (ii) global flow along streamlines determined in some independent manner; (iii) empirical models originating in, or based strongly on observation; (iv) dynamic models using magnetic and plasma boundary conditions low in the corona to find both the geometry of streamlines and the flow field.

To date, models both of ideal coronal holes and of specific observed coronal holes indicate that flow velocities above 100 km s+1, and temperatures of perhaps 2 × 106K are possible at 2R heliocentric distance, where densities of 2 × 105 cm+3 have been reported. These velocities are at, or just above the sound speed, although still sub-Alfvénic. There is also general agreement among models of large polar holes that conversion of mechanical wave energy flux into solar wind kinetic energy is occurring in the 2R to 5R range, perhaps occurs even further outwards, and that the magnitude and extent of this energy deposition depends on the size and on the geometrical divergence of the hole.

However, each model exhibits distinct weaknesses counteracted only by the complimentary nature of the various types of models. Models in class (i) are simply not global representations, but are tractable when dealing with complex forms of the energy equation or with several ion species. Class (ii) models lack any geometrical information beyond the ad hoc assumption of known streamline geometry, but have the same advantages as those in class (i). Class (iii) models cannot determine streamline geometry within a hole and do not extend further from the Sun than the available data — although they place important constraints on models in the other classes. Class (iv) models are limited to simple forms of the energy equation and/or to quasi-radial flow, but are the only models producing self-consistent streamline geometries through inclusion of transverse magnetic stresses in the momentum equation.

Most limitations in coronal hole flow models can be eliminated by using known numerical techniques to combine models in classes (i), (ii), and (iv). This would allow detailed models of coronal holes and corresponding interplanetary conditions to be developed for specific time periods, at the cost of flexibility and possibly also general conceptual understanding. Nevertheless, the concept of a coronal hole is now reasonably well established, and acceptable modelling approaches are rapidly filling the literature. It can be anticipated that the evolution of these models, together with present and future observations, will bring us much nearer to understanding coronal energetics and dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. and Pneuman, G. W.: 1976, Solar Phys. 46, 185.

    Google Scholar 

  • Adams, W. M. and Sturrock, P. A.: 1975, Astrophys. J. 202, 259.

    Google Scholar 

  • Allen, C. W.: 1944, Monthly Notices Roy. Astron. Soc. 104, 13.

    Google Scholar 

  • Allen, C. W.: 1963, Astrophysical Quantities, 2nd edition, Athlone, London, p. 176.

    Google Scholar 

  • Altschuler, M. D., Trotter, D. E., and Orrall, F. Q.: 1972, Solar Phys. 26, 354.

    Article  CAS  Google Scholar 

  • Altschuler, M. D., Trotter, D. E., Newkirk, G. Jr., and Howard, R.: 1974, Solar Phys. 39, 3.

    Google Scholar 

  • Barnes, A.: 1978, in C. F. Kennel, L. J. Lanzorotti, and E. N. Parker (eds), Solar System Plasma Physics, Twentieth Century Review, North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  • Bartels, J.: 1934, J. Geophys. Res. 39, 201.

    Google Scholar 

  • Belcher, J. W. and Davis, L. Jr.: 1971, J. Geophys. Res. 76, 3534.

    Google Scholar 

  • Billings, D. E. and Roberts, W. O.: 1964, Astrophysica Norvegica IX, 147.

    Google Scholar 

  • Burlaga, L.: 1979, this issue, p. 201.

  • Chiuderi-Drago, F. and Poletto, G.: 1977, Astron. Astrophys. 60, 227.

    Google Scholar 

  • Couturier, P.: 1977, Astron. Astrophys. 59, 239.

    Google Scholar 

  • Cushman, G. W. and Rense, W. A.: 1976, Astrophys. J. 207, L61.

    Google Scholar 

  • Durney, B. R. and Pneuman, G. W.: 1975, Solar Phys. 40, 461.

    Google Scholar 

  • Endler, F.: 1971, ‘Interaction Between the Solar Wind and Coronal Magnetic Fields’, Ph.D. Thesis, Gottingen Univ.

  • Fahr, H. J., Bird, M. K., and Ripken, H. W.: 1977, Astnn. Astrophys. 58, 339.

    Google Scholar 

  • Gabriel, A. H.: 1976, Phil. Trans. Roy. Soc. London 281, 339.

    Google Scholar 

  • Harvey, J. W. and Sheeley, N. R. Jr.: 1979, this issue, p. 139.

  • Hearn, A. G.: 1977, Solar Phys. 51, 159.

    Google Scholar 

  • Hollweg, J. V.: 1975, Rev. Geophys. Space Phys. 13, 263.

    Google Scholar 

  • Holzer, T. E.: 1977, J. Geophys. Res. 82, 23.

    Google Scholar 

  • Holzer, T. E.: 1978, in C. F. Kennel, L. J. Lanzerotti, and E. N. Parker (eds.), Solar System Plasma Physics: A Twentieth Anniversary Overview, North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  • Hundhausen, A. J.: 1973, Coronal Expansion and the Solar Wind, Springer-Verlag, New York.

    Google Scholar 

  • Jacques, S. A.: 1977, Astrophys. J. 215, 942.

    Google Scholar 

  • Joselyn, J. and Holzer, T. E.: 1978, J. Geophys. Res. 83, 1019.

    Google Scholar 

  • Kopp, R. A. and Holzer, T. E.: 1976, Solar Phys. 49, 43.

    Google Scholar 

  • Kopp, R. A. and Orrall, F. Q.: 1976, Astron. Astrophys. 53, 363.

    Google Scholar 

  • Krieger, A. S., Timothy, A. F., and Roelof, E. C.: 1973, Solar Phys. 29, 505.

    Google Scholar 

  • Levine, R. H., Altschuler, M. D., Harvey, J. W., and Jackson, B. V.: 1977, Astrophys. J. 215, 636.

    Google Scholar 

  • McWhirter, R. W. P., Thonemann, P. C., and Wilson, R.: 1975, Astron. Astrophys. 40, 63.

    Google Scholar 

  • McWhirter, R. W. P., Thonemann, P. C., and Wilson, R.: 1977, Astron. Astrophys. 61, 859.

    Google Scholar 

  • Munro, R. H. and Jackson, B. V.: 1977, Astrophys. J. 213, 874.

    Google Scholar 

  • Nerney, S. F. and Suess, S. T.: 1975, Astrophys. J. 196, 837.

    Google Scholar 

  • Newkirk, G., Jr.: 1972, in C. P. Sonett, P. J. Coleman Jr., and J. M. Wilcox (eds.), Solar Wind, Proceedings of the Solar Wind Conference, Asilomar, Calif., NASA Publication SP-308, p. 11.

  • Noci, G.: 1973, Solar Phys. 28, 403.

    Google Scholar 

  • Nolte, J. T., Krieger, A. S., Timothy, A. F., Gold, R. E., Roelof, E. C., Vaiana, G., Lazarus, A. J., Sullivan, J. D., McIntosh, P. S.: 1976, Solar Phys. 46, 303.

    Google Scholar 

  • Parker, E. N.: 1963, Interplanetary Dynamical Processes, Interscience Publishers, New York.

    Google Scholar 

  • Parker, E. N.: 1964, Astrophys. J. 139, 72.

    Google Scholar 

  • Pecker, J. C. and Roberts, W. O.: 1955, J. Geophys. Res. 60, 33.

    Google Scholar 

  • Pneuman, G. W.: 1973, Solar Phys. 28, 247.

    Google Scholar 

  • Pneuman, G. W.: 1976, J. Geophys. Res. 81, 5049.

    Google Scholar 

  • Pneuman, G. W. and Kopp, R. A.: 1971, Solar Phys. 18, 258.

    Google Scholar 

  • Richter, A. K. and Suess, S. T.: 1977, J. Geophys. Res. 82, 593.

    Google Scholar 

  • Riesebieter, W.: 1977a, EOS Trans. AGU 58, 485.

    Google Scholar 

  • Riesebieter, W.: 1977b, ‘Dreidimensionale modellrechnungen zum solaren Wind’, Ph.D. dissertation, Technical University at Braunschweig, Germany.

    Google Scholar 

  • Ripken, H. W.: 1977, EOS Trans. AGU 58, 1225.

    Google Scholar 

  • Rosner, R. and Viana, G. S.: 1977, Astrophys. J. 216, 141.

    Google Scholar 

  • Shapiro, A. H.: 1953, The Dynamics and Thermodynamics of Compressible Fluid Flows, Ronald Press, New York.

    Google Scholar 

  • Siscoe, G. L. and Finley, L. T.: 1969, Solar Phys. 9, 452.

    Google Scholar 

  • Siscoe, G. L. and Finley, L. T.: 1970, J. Geophys. Res. 75, 1817.

    Google Scholar 

  • Spitzer, L.: 1962, Physics of Fully Ionized Gases, Interscience Publishers, New York.

    Google Scholar 

  • Steinolfson, R. S. and Tandberg-Hanssen, E.: 1977, Solar Phys. 55, 99.

    Google Scholar 

  • Suess, S. T. and Nerney, S. F.: 1973, Astrophys. J. 184, 17.

    Google Scholar 

  • Suess, S. T. and Nerney, S. F.: 1975, Solar Phys. 40, 487.

    Google Scholar 

  • Suess, S. T., Richter, A. K., Winge, C. R., and Nerney, S. F.: 1977, Astrophys. J. 217, 296.

    Google Scholar 

  • Waldmeier, M.: 1957, Die Sonnen Korona, Birkhauser Verlag Basel und Stuttgart.

    Google Scholar 

  • Whang, Y. C. and Chien, T. H.: 1978, Astrophys. J. 221, 350.

    Google Scholar 

  • Wilcox, J. M. and Ness, N. F.: 1968, Space Sci. Rev. 8, 258.

    Google Scholar 

  • Winge, C. R. Jr., and Coleman, P. J. Jr.: 1974, Planetary Space Sci. 22, 439.

    Google Scholar 

  • Zirker, J. B.: 1977a, Rev. Geophys. Space Phys. 15, 257.

    Google Scholar 

  • Zirker, J. B. (ed.): 1977b, Coronal Holes and High Speed Wind Streams, Colorado Assoc. Univ. Press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suess, S.T. Models of coronal hole flows. Space Sci Rev 23, 159–200 (1979). https://doi.org/10.1007/BF00173809

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173809

Keywords

Navigation