Skip to main content
Log in

Towards the circuit theory of solar flares

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

It has been shown that the main problems of the circuit theory of solar flares - unlikely huge current growth time and the origin of the current interruption - have been resolved considering the case of magnetic loop emergence and the correct application of Ohm's law. The generalized Ohm's law for solar flares is obtained. The conditions for flare energy release are as follows: large current value, > 1011 A, nonsteady-state character of the process, and the existence of a neutral component in a flare plasma. As an example, the coalescence of a flare loop and a filament is considered. It has been shown that the current dissipation has increased drastically as compared with that in a completely ionized plasma. The current dissipation provides effective Joule heating of the plasma and particle acceleration in a solar flare. The ion-atom collisions play the decisive role in the energy release process. As a result the flare loop resistance can grow by 8–10 orders of magnitude. For this we do not need the anomalous resistivity driven by small-scale plasma turbulence. The energy release emerging from the upper part of a flare loop stimulates powerful energy release from the chromospheric level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasofu, S.-I.: 1979, Solar Phys. 64, 333.

    Google Scholar 

  • Akasofu, S.-I. and Chapman, S.: 1972, Solar-Terrestrial Physics, Clarendon Press, Oxford.

    Google Scholar 

  • Alfvén, H.: 1981, Cosmic Plasma, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Alfvén, H. and Carlqvist, P.: 1967, Solar Phys. 1, 220.

    Google Scholar 

  • Carlqvist, P.: 1969, Solar Phys. 7, 377.

    Google Scholar 

  • Cowling, T. G.: 1957, Magnetohydrodynamics, Interscience Publ. Inc., New York.

    Google Scholar 

  • Cox, D. P. and Tucker, W. N.: 1969, Astrophys. J. 157, 1157.

    Google Scholar 

  • de Jager, C.: 1979, Solar Phys. 64, 135.

    Google Scholar 

  • de Jager, C.: 1986, Space Sci. Rev. 44, 43.

    Google Scholar 

  • Dodson, H. W. and Hedeman, E. R.: 1970, Solar Phys. 13, 401.

    Google Scholar 

  • Fadeev, V. M., Kvartzhava, I. F., and Komarov, N. M.: 1965, Nuclear Fusion 5, 202.

    Google Scholar 

  • Gershman, B. N.: 1974, Dynamics of Ionosphere Plasma, Nauka, Moscow.

    Google Scholar 

  • Gurevich, A. V., Meerson, B. I., and Rogachevsky, I. V.: 1985, Fizika Plasmy 11, 1213.

    Google Scholar 

  • Henoux, J.-C.: 1987, in V. E. Stepanov and V. N. Obridko (eds.), Solar Maximum Analysis, VNU Sci. Press, p. 109.

  • Heyvaerts, J.: 1974, Solar Phys. 38, 419.

    Google Scholar 

  • Ionson, J. A.: 1982, Astrophys. J. 254, 318.

    Google Scholar 

  • Kan, J. R. and Lyu, L. H.: 1990, J. Geophys. Res. 95, 4239.

    Google Scholar 

  • Kan, J. R., Akasofu, S.-I., and Lee, L. C.: 1983, Solar Phys. 84, 153.

    Google Scholar 

  • Magun, A., Fuhrer, M., Bruggmann, B., Graeter, M., Eder, S., and Herrmann, R.: 1990, Berne Solar Observations, Report No. 57.

  • Melrose, D. B. and McClymont, A. N.: 1987, Solar Phys. 113, 241.

    Google Scholar 

  • Pustyl'nik, L. A.: 1973, Astron. Zh. 50, 1211.

    Google Scholar 

  • Rust, D. M. and Webb, D. F.: 1977, Solar Phys. 54, 403.

    Google Scholar 

  • Schlüter, A. and Biermann, L.: 1950, Z. Naturforsch. 5a, 237.

    Google Scholar 

  • Sen, H. K. and White, M. L.: 1972, Solar Phys. 23, 146.

    Google Scholar 

  • Severny, A. B.: 1965, Space Sci. Rev. 3, 451.

    Google Scholar 

  • Smith, S. and Ramsey, H. E.: 1964, Z. Astrophys. 60, 1.

    Google Scholar 

  • Spicer, D. S.: 1977, Solar Phys. 53, 305.

    Google Scholar 

  • Somov, B. V. and Titov, V. S.: 1985, Solar Phys. 102, 79.

    Google Scholar 

  • Stepanov, A. V., Urpo, S., and Zaitsev, V. V.: 1992, Solar Phys. (in press).

  • Sturrock, P. A.: 1980, in P. A. Sturrock (ed.), Solar Flares, Colorado Associated University Press, Boulder, p. 411.

    Google Scholar 

  • Švestka, Z.: 1976, Solar Flares, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Syrovatsky, S. I.: 1966, Astron. Zh. 43, 430.

    Google Scholar 

  • Tomozov, V. M.: 1971, Astron. Zh. 48, 556.

    Google Scholar 

  • Webb, D. F. and Jackson, B. V.: 1981, Solar Phys. 73, 341.

    Google Scholar 

  • Zaitsev, V. V. and Stepanov, A. V.: 1983, Solar Phys. 88, 297.

    Google Scholar 

  • Zaitsev, V. V. and Stepanov, A. V.: 1988, Soviet Astron. Letters 14, 193.

    Google Scholar 

  • Zaitsev, V. V. and Stepanov, A. V.: 1989, ‘Generalization of Ohm's Law to Nonstationary Processes in Partially Ionized Plasma: Solar Flare Application’, Preprint IPFAN-248, Gorky.

  • Zhdanov, A. A. and Charikov, Yu. E.: 1985, Soviet Astron. Letters 11, 216.

    Google Scholar 

  • Zirin, H., Ingham, W., Hudson, H., and McKenzie, D.: 1967, Solar Phys. 9, 269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaitsev, V.V., Stepanov, A.V. Towards the circuit theory of solar flares. Sol Phys 139, 343–356 (1992). https://doi.org/10.1007/BF00159158

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00159158

Keywords

Navigation