Skip to main content

The Genus Thermus and Related Microorganisms

  • Chapter
The Prokaryotes

Abstract

Bacteria of the genus Thermus have been isolated from many natural and artificial thermal environments throughout the world. The first strains of the type species Thermus aquaticus were isolated from neutral and alkaline hot springs in Yellowstone National Park, USA (Brock and Freeze, 1969). Since then, strains have also been isolated from Yellowstone Park (Munster et al., 1986), and from other terrestrial hot springs in Iceland (Cometta et al., 1982b; Hudson et al., 1987a; Kristjansson and Alfredsson, 1983; Pask-Hughes and Williams, 1977), New Zealand (Hudson et al., 1986, 1987b), and Continental Portugal and the Azores Islands (Prado et al., 1988; Santos et al., 1989). In Japan, early isolates were named “Flavobacterium thermophilum” (Oshima and Imahori, 1971), and then renamed “Thermus thermophilus” (Oshima and Imahori, 1974). Other isolates have been given invalid species names (Saiki et al., 1972; Taguchi et al., 1982). In addition to terrestrial thermal environments, strains of Thermus have also been isolated from shallow marine thermal vents off Iceland (Kristjansson et al., 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 74.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literature Cited

  • Alfredsson, G. A., S. Baldursson, and J. K. Kristjansson. 1985. Nutritional diversity among Thermus spp. isolated from Icelandic hot springs. Syst. Appl. Microbiol. 6: 308–311.

    Google Scholar 

  • Alfredsson, G. A., J. K. Kristjansson, S. Hjorleifsdottir, and K. O. Stetter. 1988. Rhodothermus marinus, gen. nov., sp. nov., a thermophilic, halophilic bacterium from submarine hot springs in Iceland. J. Gen. Microbiol. 134: 299–306.

    Google Scholar 

  • Barker, D., M. Hoft, A. Oliphant, and R. White, 1984. A second type II restriction endonuclease from Therm us aquaticus with unusual sequence specificity. Nucl. Acids Res. 12: 5567–5581.

    Google Scholar 

  • Becker, R. J. and M. J. Starzyk. 1984. Morphology and rotund body formation in Thermus aquaticus. Microbios 41: 115–129.

    Google Scholar 

  • Berenguer, J., M. L. M. Faraldo, and de Pedro, M. A. 1988. Cat’-stabilized oligomeric protein complexes are major components of the cell envelope of “Therm us thermophilus” HB-8. J. Bacteriol. 170: 2441–2447.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bernal, W. M., N. D. H. Raven and R. A. D. Williams, 1986. Restriction endonuclease from Thermus ruber. Proc. 14th Cong. Microbiol., P14–21.

    Google Scholar 

  • Brock, T. D. 1978. Thermophilic microorganisms and life at high temperatures. Springer-Verlag, Heidelberg.

    Book  Google Scholar 

  • Brock, T. D. 1981. Extreme thermophiles of the genera Thermus and Sulfolobus, p. 978–984. In: M. P. Starr, H. Stolp, H. G. Truper, A. Ballows and H. G. Schlegel (ed.), The prokaryotes: A handbook on habitats, isolation and identification of bacteria. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Brock, T. D. and L. K. Boylen. 1973. Presence of thermophilic bacteria in laundry and hot-water heaters. Appl. Microbiol. 25: 72–76.

    Google Scholar 

  • Brock, T. D. and M. R. Edwards. 1970. Fine structure of Thermus aquaticus, an extreme thermophile. J. Bacteriol. 104: 509–517.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brock, T. D. and H. Freeze, 1969. Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. J. Bacteriol. 98: 289–297.

    Google Scholar 

  • Brock, T. D. and I. Yoder. 1971. Thermal pollution of a small river by a large university: bacteriological studies. Proc. Indiana Acad. Sci. 80: 183–188.

    Google Scholar 

  • Castenholz, R. W. 1969. Thermophilic blue-green algae and the thermal environment. Bacteriol. Rev. 33: 476–504.

    Google Scholar 

  • Chien, A., D. B. Edgar, and J. M. Trela, 1976. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J. Bacteriol. 127: 1550–1557.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Collins, M. D. and D. Jones, 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Revs. 45: 316–354.

    Google Scholar 

  • Cometta, S., B. Sonnleitner, and A. Feichter, 1982a. The growth behavior of Thermus aquaticus in continuous cultivation. Eur. J. Appl. Microbiol. Biotechnol. 15: 6974.

    Google Scholar 

  • Cometta, S., B. Sonnleitner, W. Sidler, and A. Fiechter. 1982b. Population distribution of aerobic extremely thermophilic microorganisms from an Icelandic natural hot spring. Eur. J. Appl. Microbiol. Biotechnol. 16: 151–156.

    Google Scholar 

  • Cowan, D. A. and R. M. Daniel. 1982a. Purification and properties of an extracellular protease (caldolysin) from an extreme thermophile Biochim. Biophys. Acta 705: 293–305.

    Google Scholar 

  • Cowan, D. A. and R. M. Daniel. 1982b. The properties of immobilized caldolysin, a thermostable protease from an extreme thermophile. Biotechnol. Bioeng. 24: 20522061.

    Google Scholar 

  • Cowan, D. A., R. M. Daniel, A. M. Martin, and H. W. Morgan. 1984. Some properties of a ß-galactosidase from an extremely thermophilic bacterium. Biotechnol. Bioeng. 26: 1141–1145.

    Google Scholar 

  • Cowan, D. A. R. M. Daniel, and H. W. Morgan. 1987. A comparison of extracellular serine proteases from four strains of Thermus aquaticus. FEMS Microbiol. Let. 43: 155–159.

    Google Scholar 

  • Degryse, E. and N. Glansdorff. 1976. Metabolic function of the glyoxylic shunt in an extreme thermophilic strain of the genus Thermus. Arch. Intern. Physiol. Biochem. 84: 598–599

    Google Scholar 

  • Degryse, E., N. Glansdorff, and A. Pierard. 1978. A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch. Microbiol. 177: 189–196.

    Google Scholar 

  • Golovacheva, R. S. 1977. Complex spherical bodies of Ther- mus ruber. Mikrobiologiya (translation) 46: 410–415

    Google Scholar 

  • Gyllensten, U. B. and H. A. Ehrlich. 1988. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLADQA locus. Proc. Natl. Acad. Sci. USA. 85: 7652–7656.

    Google Scholar 

  • Hartmann, R. K., J. Wolters, B. Kroger, S. Schultze, T. Specht, and V. A. Erdmann. 1989. Does Thermus represent another deep eubacterial branching? Syst. Appl. Microbiol. 11: 243–249.

    Google Scholar 

  • Hensel, R., W. Demharter, O. Kandler, R. M. Kroppenstedt, and E. Stackebrandt 1986. Chemotaxonomic and molecular-genetic studies of the genus Thermus: Evidence for a phylogenetic relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus Int. J. Syst. Bacteriol. 36: 444–453

    Google Scholar 

  • Hudson, J. A., H. W. Morgan, and R. M. Daniel. 1986. A numerical classification of some Thermus isolates. J. Gen. Microbiol. 132: 532–540.

    Google Scholar 

  • Hudson, J. A., H. W. Morgan, and R. M. Daniel. 1987a. Numerical classification of some Thermus isolates from Icelandic hot springs. Syst. Appl. Microbiol. 9: 218–223.

    Google Scholar 

  • Hudson, J. A., H. W. Morgan, and R. M. Daniel. 1987b. Thermus fzliformis sp. nov., a filamentous caldoactive bacterium. Int. J. Syst. Bacteriol. 37: 431–436.

    Google Scholar 

  • Hudson, J. A., H. W. Morgan, and R. M. Daniel. 1989. Numerical classification of Thermus isolates from globally distributed hot springs. Syst. Appl. Microbiol. 11: 250256.

    Google Scholar 

  • Innis, M. A., K. B. Myambo, D. H. Gelfand, and M. A. D. Brow. 1988. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction,amplified DNA. Proc. Natl. Acad. Sci. USA. 85: 9436–9440.

    Google Scholar 

  • Kaledin, A. S., A. G. Slyusarenko, and S. I. Gorodetskii. 1986. Isolation and properties of DNA polymerase from extremely thermophilic bacterium Thermus aquaticus YT1. Biokhimiya (translation) 45: 494–501.

    Google Scholar 

  • Khoo, C., D. A. Cowan, R. M. Daniel, and H. W. Morgan. 1984. Interactions of calcium and other metal ions with caldolysin, the thermostable proteinase from Thermus aquaticus strain T351. Biochem. J. 221: 407–413.

    Google Scholar 

  • Kraepelin G., and H. U. Gravenstein. 1980. Experimentelle induktion von `rotund bodies’ bei Thermus aquaticus. Zeitschr. algm. Mikrobiol. 20: 33–45.

    Google Scholar 

  • Kristjansson, J. K. and G. A. Alfredsson. 1983. Distribution of Thermus spp. in Icelandic hot springs and a thermal gradient. Appl. Environ. Microbiol. 45: 1785–1798.

    Google Scholar 

  • Kristjansson, J. K., G. O. Hreggvidsson, and G. A. Alfreds-son. 1986. Isolation of halotolerant Thermus spp. from submarine hot springs in Iceland. Appl. Environ. Mi-crobiol. 52: 1313–1316.

    Google Scholar 

  • Kwon, S.-T., I. Terada, H. Matsuzawa, and T. Ohta. 1988. Nucleotide sequence of the gene for aqualysin I (a thermophilic alkaline serine protease) of Thermus aquaticus YT1 and characteristics of the deduced primary structure of the enzyme. Eur. J. Biochem. 173: 491–497.

    Google Scholar 

  • Loginova, L. G., and L. A. Egorova. 1975. An obligately thermophilic bacterium, Thermus ruber, from hot springs in Kamchatka. Mikrobiologiya (translation) 44: 593–597.

    Google Scholar 

  • Loginova, L. G., L. A. Egorova, R. S. Golovacheva, and

    Google Scholar 

  • L. M. Seregina. 1984. Thermus ruber sp. nov. rev. Int. J. Syst. Bacteriol. 34: 498–499.

    Google Scholar 

  • Matsuzawa, H., M. Hamaoki, and T. Ohta. 1983. Production of thermophilic extracellular proteases (aqualysins I and II) by Thermus aquaticus YT-1, an extreme thermophile. Agr. Biol. Chem. 47: 25–28.

    Google Scholar 

  • McClelland, M., L. G. Kessler, and M. Bittner. 1984. Site specific cleavage of DNA at 8- and 10-base pair sequences. Proc. Natl. Acad. Sci. USA. 81: 983–987.

    Google Scholar 

  • McKay, A., J. Quiller, and C. W. Jones. 1982. Energy conservation in the extreme thermophile Thermus thermophilus HB8. Arch. Microbiol. 131: 43–50.

    Google Scholar 

  • Merkel, G. J., S. S. Stapleton, and J. J. Perry. 1978 Isolation and peptidoglycan of Gram-negative hydrocarbon-utilizing thermophilic bacteria. J. Gen. Microbiol. 109: 141–148.

    Google Scholar 

  • Minagawa, E., S. Kaminogawa, H. Matsazawa, T. Ohta, and K. Yamauchi. 1988. Isolation and characterization of a thermostable aminopeptidase (aminopeptidase T) from Thermus aquaticus YT1, an extremely thermophilic bacterium Agric. Biol. Chem. 52: 1755–1763.

    Google Scholar 

  • Munster, M. J., A. P. Munster, J. R. Woodrow, and R. J. Sharp. 1986. Isolation and preliminary taxonomic studies of Thermus strains isolated from Yellowstone National Park, USA. J. Gen. Microbiol. 132: 1677–1683.

    Google Scholar 

  • Nakamura, N., N. Sashihara, H. Nagayama, and K. Horikoshi. 1989. Characterization of pullulanase and a-amylase activities of a Thermus sp. AMD33. Starch. 41: 112–117.

    Article  Google Scholar 

  • Oshima, T. 1978. Structure and function of membrane lipids in thermophilic bacteria, p. 1–10. In: S. M. Friedman (ed.), Biochemistry of thermophily. Academic Press, New York.

    Chapter  Google Scholar 

  • Oshima T. and K. Imahori. 1971. Isolation of an extreme thermophile and thermostability of its transfer ribonucleic acid and ribosomes. J. Gen. Appl. Microbiol. 17: 513–517.

    Google Scholar 

  • Oshima, T. and K. Imahori. 1974. Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. Int. J. Syst. Bacteriol. 24: 102–112.

    Google Scholar 

  • Owusu, R. K. and D. A. Cowan. 1989. Correlation between microbial protein thermostability and resistance to denaturation in aqueous:organic solvent two-phase systems. Enz. Microb. Technol. 11: 568–574.

    Google Scholar 

  • Pask-Hughes, R. A., and N. Shaw. 1982. Glycolipids from some thermophilic bacteria belonging to the genus Thermus. J. Bacteriol. 149: 54–58.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pask-Hughes, R. A. and R. A. D. Williams. 1975. Extremely thermophilic Gram-negative bacteria from hot tap water. J. Gen. Microbiol. 88: 321–328.

    Google Scholar 

  • Pask-Hughes, R. A. and R. A. D. Williams. 1977. Yellowpigmented strains of Thermus spp. from Icelandic hot springs. J. Gen. Microbiol. 102: 375–383.

    Google Scholar 

  • Pask-Hughes, R. A. and R. A. D. Williams. 1978. Cell envelope components of strains belonging to the genus Thermus. J. Gen. Microbiol. 107: 65–72.

    Google Scholar 

  • Plant, A. R., H. W. Morgan, and R. M. Daniel. 1986. A highly stable pullulanase from Thermus aquaticus YT 1. Enz. Microb. Technol. 8: 668–672.

    Google Scholar 

  • Prado, A., M. S. da Costa, and V. M. C. Madeira. 1988. Effect of the growth temperature on the lipid composition of two strains of Thermus sp. J. Gen. Microbiol. 134: 1653–1660.

    Google Scholar 

  • Ramaley, R. F. and K. Bitzinger. 1975. Types and distribution of obligate thermophilic bacteria in man-made and natural thermal gradients. Appl. Microbiol. 30: 152–155.

    Google Scholar 

  • Ramaley, R. E and J. Hixson. 1970. Isolation of non-pig-mented, thermophilic bacterium similar to Thermus aquaticus. J. Bacteriol. 103: 527–528.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roberts, R. J. 1989. Restriction enzymes and their isoschizomers Nucl. Acids Res. 17: 347–387.

    Article  Google Scholar 

  • Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich, 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487491.

    Google Scholar 

  • Saiki, R. K., S. J. Scharf, E Faloona, K. B. Mullis, G. T. Horn, H. A. Ehrlich, and N. Arnheim. 1985. Enzymatic amplification of ß-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230: 1350–1354

    Article  PubMed  CAS  Google Scholar 

  • Saiki, T., R. Kimura, and K. Arima. 1972. Isolation and characterization of extremely thermophilic bacteria from hot springs. Agr. Biol. Chem. 36: 2537–2366.

    Google Scholar 

  • Santos, M. A., R. A. D. Williams, and M. S. da Costa. 1989. Numerical taxonomic study of Thermus isolates from Portuguese hot springs. Syst. Appl. Microbiol. 12: 221235.

    Google Scholar 

  • Sashihara, N., N. Nakamura, H. Nagayama, and K. Horikoshi. 1988. Cloning and expression of the thermostable pullulanase gene from Thermus AMD-33 in Escherichia coli. FEMS Microbiol. Lett. 49: 385–388.

    Google Scholar 

  • Sato, R. K., C. A. Hutchinson, and J. I. Harris, 1977. A thermostable site-specific endonuclease from Thermus aquaticus. Proc. Natl. Acad. Sci. USA 74: 542–546.

    Google Scholar 

  • Sharp, R. J. and R. A. D. Williams. 1988. Properties of Thermus ruber strains isolated from Icelandic hot springs and DNA:DNA homology of Thermus ruber and Thermus aquaticus. Appl. Environ. Microbiol. 54: 2049–2053.

    Google Scholar 

  • Shinomiya, T., M. Kobayashi, and S. Sato. 1980. A second site specific endonuclease from Thermus thermophilus 111, Tth111 II. Nucl. Acids Res. 8: 3275–3285.

    Google Scholar 

  • Shinomiya, T. and S. Sato. 1980. A site specific endonuclease from Thermus thermophilus 111, Tth111 I Nucl. Acids Res. 8: 43–56

    Article  CAS  Google Scholar 

  • Skerman, V. B. D, V. McGowan, P. H. A. Sneath. 1980 Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30: 225–420.

    Google Scholar 

  • Sonnleitner, B., S. Cometta, and A. Fiechter. 1982. Growth kinetics of Thermus thermophilus. Eur. J. Appl. Microbiol. Biotechnol. 15: 75–82.

    Google Scholar 

  • Stramer, S. L. and M. J. Starzyk. 1981. The occurrence and survival of Thermus aquaticus. Microbios 32: 99–110.

    Google Scholar 

  • Taguchi, H., M. Yamashita, H. Matsuzawa, and T. Ohta. 1982. Heat-stable and fructose 1,6-bisphosphate-activated L-lactate dehydrogenase from an extremely thermophilic bacterium J. Biochem. 91: 1343–1348.

    PubMed  CAS  Google Scholar 

  • Takase, M. and K. Horikoshi. 1988. A thermostable ß-glu-cosidase isolated from a bacterial species of the genus Thermus Appl. Microbiol. Technol. 29: 55–60.

    Google Scholar 

  • Takase, M. and K. Horikoshi. 1989. Purification and properties of a ß-glucosidase from Thermus sp. Zl. Agric. Biol. Chem. 53: 559–560.

    Google Scholar 

  • Tindall, K. R. and T. A. Kunkel. 1988. Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry. 27: 6008–6013.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich, J. T., G. A. McFeters, and K. L. Temple. 1972. Induction and characterization of ß-galactosidase in an extreme thermophile. J. Bacteriol. 110: 691–698.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Williams, R. A. D. 1975. Caldoactive and thermophilic bacteria and their thermostable proteins. Sci. Prog. 62: 373393.

    Google Scholar 

  • Williams, R. A. D. 1989. Biochemical taxonomy of the genus Thermus, p. 82–97. In: M. S. da Costa, J. C. Duarte, and R. A. D. Williams (ed.), Microbiology of extreme environments and its potential for biotechnology. Elsevier, London.

    Google Scholar 

  • Zeikus, J. G., P. W. Hegge, and M. A. Anderson. 1979. Thermoanaerobium brockii gen. nov., and sp. nov., a new chemoorganotrophic, caldoactive anaerobic bacterium Arch. Microbiol. 122: 41–46.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, R.A.D., Da Costa, M.S. (1992). The Genus Thermus and Related Microorganisms. In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, KH. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2191-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2191-1_43

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2193-5

  • Online ISBN: 978-1-4757-2191-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics