Skip to main content

Potential Application of 17O MRI to Human Ischemic Stroke

  • Conference paper
  • First Online:
Oxygen Transport to Tissue XXXII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 701))

Abstract

In cerebral ischemia, measurement of cerebral blood flow (CBF) alone is not a sensitive or specific predictor of tissue survival. Measurements of oxygen metabolism, which are directly related to cellular energy metabolism, are better predictors of tissue survival and the best of these is the “oxygen extraction fraction” (OEF). Elevation of OEF in Stage 2 hemodynamic failure, or “misery” perfusion, indicates that prolongation of this state or further reduction in blood flow will lead to failure of oxygenmetabolismand cellular necrosis,making it a sensitive and specific biomarker for the “ischemic penumbra” and a predictor of impending cerebral infarction. The methods now used to measure in vivo human cerebralmetabolic rate of oxygen (CMRO2) and OEF include 15O-PET and MRI deoxyhemoglobin sensitive techniques (Blood Oxygen Level Dependent, BOLD methods). These methods have practical and fundamental limitations for use in the clinical stroke setting. 17O-MRI is amethod of imaging oxygenmetabolismby detecting the tissue water (H17 2 O) produced by oxidative metabolism of 17O2 gas that can be performed on conventional, clinical MRI scanners using a chemically stable, non-radioactive, MR-detectable isotope of oxygen. It is more logistically applicable to clinical stroke than 15O-PET and more directly quantitative than BOLD MRI. 17O-MRI promises to provide a direct, quantitative, widely available and clinically practical method for assessing CMRO2 and OEF for evaluation of human cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 259.00
Price excludes VAT (USA)
Softcover Book
USD 329.99
Price excludes VAT (USA)
Hardcover Book
USD 329.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Latchaw RE, Yonas H, Hunter GJ, et al(2003) Guidelines and recommendations for perfusion imaging in cerebral ischemia:Ascientific statement by theAmericanHeartAssociation. Stroke; 34(4):1084-1104.

    Article  PubMed  Google Scholar 

  2. Sobesky J, et.al (2005) Does the mismatch match the penumbra? MRI and PET in stroke. Stroke.;36(5):980-985.

    Google Scholar 

  3. HeissW-D, Sobesky J, (2008) Comparison of PET andDW/PW-MRI inAcute Ischemic Stroke, Keio J Med; 57 (3): 125-131

    Article  CAS  Google Scholar 

  4. Baron JC, BousserMG,ComarD, et. al (1981) Noninvasive tomographic study ofCBFand oxygen metabolism in vivo. Potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur Neurol; 20: 273-284.

    Google Scholar 

  5. Kastrup J, Siesjö BK, Symon L (1981) The ischemic penumbra. Stroke; 12: 723-725

    Article  Google Scholar 

  6. Sette G, et. al (1989) Brain haemodynamics and oxygen metabolismin cerebrovascular disease. Brain;113:931.

    Google Scholar 

  7. Heiss WD, Graf R (1994) The ischemic penumbra. Curr Opin Neurol; 7: 11-19

    Article  PubMed  CAS  Google Scholar 

  8. Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol; 36:557-565

    Article  PubMed  CAS  Google Scholar 

  9. Derdeyn CP, Videen TO, Yundt KD, et al (2002) Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain; 125(Pt 3):595-607.

    Article  PubMed  Google Scholar 

  10. Kuroda S, Shiga T, Houkin K, et al (2006) Cerebral oxygen metabolism and neuronal integrity in patients with impaired vasoreactivity attributable to occlusive carotid artery disease. Stroke ; 37(2):393-398.

    Article  PubMed  CAS  Google Scholar 

  11. Van Zijl PCM, Measurement of Oxygen Metabolism with MRI: What Can and Cannot be Done? ISMRM 2006:48

    Google Scholar 

  12. Geisler BS, Brandhoff F, Fiehler J, Saager C, et al. (2006) Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients. Stroke; 37: 1778-1784.

    Article  PubMed  Google Scholar 

  13. Wardlaw JM, von Heijne A (2006) Increased oxygen extraction demonstrated on gradient echo (T2* ) imaging in a patient with acute ischaemic stroke. Cerebrovasc Dis ; 22:456-458.

    Article  PubMed  CAS  Google Scholar 

  14. Morita N, Harada M, Uno M, Matsubara S, et al (2008) Ischemic findings of T2 * -weighted 3-tesla MRI in acute stroke patients. Cerebrovasc Dis; 26: 367-375.

    Article  PubMed  Google Scholar 

  15. DonswijkML, Jones PS, GuadagnoJV, etal (2009) T2*-weightedMRI versus oxygen extraction fraction PET in acute stroke. Cerebrovasc Dis. ;28(3):306-13

    Google Scholar 

  16. Fiat D, Hankiewicz J, Liu S, Trbovic S, Brint S. (2004) 17O magnetic resonance imaging of the human brain. Neurol Res. ;26(8):803-808.

    Google Scholar 

  17. Zhu XH, etal (2005) In vivo 17O NMR approaches for brain at high field. NMR Biomed. ;18(2):83-103.

    Google Scholar 

  18. Zhu XH, Du F, Zhang N, etAl (2009) Advanced In Vivo Heteronuclear MRS Approaches for Studying Brain Bioenergetics Driven by Mitochondria. Methods Mol Biol. ;489:317-57.

    Google Scholar 

  19. Atkinson, I.C., Thulborn, K.R. Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging, NeuroImage (2010), doi:10.1016/j.neuroimage.2010.02.056 (Epub Feb 24, 2010)

    Google Scholar 

  20. Hopkins AL, Haacke EM, Barr, et al (1988) Oxygen-17 contrast agents. Fast imaging techniques. Invest Radiol ;23(suppl 1):S240–2.

    Google Scholar 

  21. Arai T, Nakao S, Morikawa S, et al (1998) Measurement of local cerebral blood flow by magnetic resonance imaging: in vivo auto radiographic strategy using 17O-labeled water. Brain Res Bull;45:451-456

    Article  PubMed  CAS  Google Scholar 

  22. DeLaPaz RL, Gupte P, Connolly S, Wu E, Brown T. (1939) Oxygen-17 Uptake in Mouse Cerebral Ischemia. ISMRM 2003;.

    Google Scholar 

  23. Ronen I,Merkle H, Ugurbil K, Navon G. (1998) Imaging of H217O distribution in the brain of a live rat by using proton-detected 17OMRI. Proc Natl Acad Sci U S A.; 95 (22):12934-12939.

    Google Scholar 

  24. Reddy R, Stolpen AH, Charagundla SR, Insko EK, Leigh JS. (1996)17O-decoupled 1H detection using a double-tuned coil. Magn Reson Imaging.;14(9):1073-1078.

    Article  PubMed  CAS  Google Scholar 

  25. de Crespigny AJ, D’Arceuil HE, Engelhorn T, et al (2000) MRI of focal cerebral ischemia using (17)O-labeled water. Magn Reson Med ;43:876–83.

    Article  PubMed  Google Scholar 

  26. Tailor DR, Baumgardner JE, Regatte RR, Leigh JS, Reddy R. (2004) Proton MRI of metabolically produced H2 17O using an efficient 17O2 delivery system. Neuroimage.;22(2):611-618.

    Article  PubMed  Google Scholar 

  27. Mellon EA, et al (2009) Single shot T1rho MRI of metabolically generated water in vivo. Adv Exp Med Biol. 2009;645:279-86.

    Article  PubMed  Google Scholar 

  28. O’Conner JPB, Naish JH, Jackson A, Waterton JC, et al (2009)Comparison of Normal Tissue R1and R ∗ 2Modulation by Oxygen and Carbogen. Magn Reson Med 61:75-83

    Article  Google Scholar 

  29. Okazawa H, Kudo T. (2009) Clinical impact of hemodynamic parameter measurement for cerebrovascular disease using positron emission tomography and (15)O-labeled tracers. Ann Nucl Med. ;23(3):217-27.

    Google Scholar 

  30. Ohta S, Meyer E, Thompson CJ, Gjedde A. (1992)Oxygen consumption of the living human brain measured after a single inhalation of positron emitting oxygen. J Cereb Blood Flow Metab. ;12:179–92.

    Article  PubMed  CAS  Google Scholar 

  31. Brouns R, De Deyn PP, (2009) The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg. ;111(6):483-95

    Google Scholar 

  32. Niizuma K, Endo H, Chan PH. (2009)Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem.;109 Suppl 1:133-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert DeLaPaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

DeLaPaz, R., Gupte, P. (2011). Potential Application of 17O MRI to Human Ischemic Stroke. In: LaManna, J., Puchowicz, M., Xu, K., Harrison, D., Bruley, D. (eds) Oxygen Transport to Tissue XXXII. Advances in Experimental Medicine and Biology, vol 701. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7756-4_29

Download citation

Publish with us

Policies and ethics