Skip to main content

Petroleomics: Advanced Characterization of Petroleum-Derived Materials by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS)

  • Chapter
Asphaltenes, Heavy Oils, and Petroleomics

Abstract

The high mass resolving power and mass accuracy of FT-ICR MS allow for the resolution and elemental composition assignment of thousands of species in petroleum-derived materials. Here, we report its application to heavy crude oils, associated production deposits, and isolated asphaltenes to reflect recent advances in the characterization of complex mixtures, as well as low-resolution mass spectrometry experiments aimed at verifying suspected multimer formation. Electrospray ionization (ESI), field desorption/ionization (FD/FI), electron ionization (EI), and atmospheric pressure photoionization (APPI) FT-ICR MS results are discussed. ESI results reveal the compositional complexity of the most polar species in crude oil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Softcover Book
USD 169.99
Price excludes VAT (USA)
Hardcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boduszynski, M.M. (1987). Composition of heavy petroleums. 1. Molecular weight, hydrogen deficiency, and heteroatom concentration as a function of atmospheric equivalent boiling point up to 1400°F (760°C). Energy Fuels 1(1), 2–11.

    Article  CAS  Google Scholar 

  2. Boduszynski, M.M. (1988). Composition of heavy petroleums. 2. Molecular characterization. Energy Fuels 2(5), 597–613.

    Article  CAS  Google Scholar 

  3. Boduszynski, M.M. and K.H. Altgelt (1992). Composition of heavy petroleums. 4. Significance of the extended atmospheric equivalent boiling point (AEBP) scale. Energy Fuels 6(1), 72–76.

    Article  CAS  Google Scholar 

  4. Altgelt, K.H. and M.M. (1992). Boduszynski, Composition of heavy petroleums. 3. An improved boiling point-molecular weight relation. Energy Fuels 6(1), 68–72.

    Article  CAS  Google Scholar 

  5. Zhan, D.L. and J.B. Fenn (2000). Electrospray mass spectrometry of fossil fuels. Int. J. Mass Spectrom. 194(2–3), 197–208.

    CAS  Google Scholar 

  6. Jaffe, S.B. (2001). Compositional based modeling. In: 222nd ACS National Meeting, Chicago, IL.

    Google Scholar 

  7. Quann, R.J. and S.B. Jaffe (1992). Structure-oriented lumping: Describing the chemistry of complex hydrocarbon mixtures. Ind. Eng. Chem. Res. 31(11), 2483–97.

    Article  CAS  Google Scholar 

  8. Quann, R.J. and S.B. Jaffe (1996). Building useful models of complex reaction systems in petroleum refining. Chem. Eng. Sci. 51(10), 1615–1635.

    Article  CAS  Google Scholar 

  9. Comisarow, M.B. and A.G. Marshall (1974). Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 25, 282–283.

    Article  CAS  Google Scholar 

  10. Comisarow, M.B. and A.G. Marshall (1974). Frequency-sweep Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 26, 489–490.

    Article  CAS  Google Scholar 

  11. Marshall, A.G. and S. Guan (1996). Advantages of high magnetic field for FT-ICR mass spectrometry. Rapid Commun. Mass Spectrom. 10, 1819–1823.

    Article  CAS  Google Scholar 

  12. Guan, S., A.G. Marshall, and S.E. Seheppele (1996). Resolution and chemical formula identification of aromatic hydrocarbons containing sulfur, nitrogen, and/or oxygen in crude oil distillates. Anal. Chem. 68, 46–71.

    Article  CAS  Google Scholar 

  13. Rodgers, R.P., P.M. White, D.G. McIntosh, and A.G. Marshall (1998). 5.6 Tesla Fourier transform ion cyclotron resonance mass spectrometer for analysis of volatile complex mixtures. Rev. Sci. Instrum. 69, 2278–2284.

    Article  CAS  Google Scholar 

  14. Hughey, C.A., R.P. Rodgers, and A.G. Marshall (2002). Resolution of 11,000 compositionally distinct components in a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil. Anal. Chem. 74, 4145–149.

    Article  CAS  Google Scholar 

  15. Kendrick, E. (1963). A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds. Anal. Chem. 35, 2146–2154.

    Article  CAS  Google Scholar 

  16. Hughey, C.A., C.L. Hendrickson, R.P. Rodgers, A.G. Marshall, and K. Qian (2001). Kendrick mass defect spectroscopy: A compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal. Chem. 73, 4676–4681.

    Article  CAS  Google Scholar 

  17. van Krevelen, D.W. (1950). Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29, 269–284.

    Google Scholar 

  18. Kim, S., R.W. Kramer, and P.G. Hatcher (2003). Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the Van Krevelen diagram. Anal. Chem. 75, 5336–5344.

    Article  CAS  Google Scholar 

  19. Wu, Z., R.P. Rodgers, and A.G. Marshall (2004). Two and three dimensional van Krevelen diagrams: A graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution Broadband FT-ICR mass measurements. Anal. Chem. 76, 2511–2516.

    Article  CAS  Google Scholar 

  20. Marshall, A.G. (2000). Milestones in Fourier transform ion cyclotron resonance mass spectrometry technique development. Int. J. Mass Spectrom. 200, 331–336.

    Article  CAS  Google Scholar 

  21. Marshall, A.G. and R.P. Rodgers (2004). Petroleomics: The next grand challenge for chemical analysis. Ace. Chem. Res. 37, 53–59.

    Article  CAS  Google Scholar 

  22. Rodgers, R.P, T.M. Schaub, and A.G. Marshall (2005). Petroleomics: Mass spectrometry returns to its roots. Anal. Chem. 77, 20A–27A.

    Article  CAS  Google Scholar 

  23. Schaub, T.M., C.L. Hendrickson, J.P. Quinn, R.P. Rodgers, and A.G. Marshall (2005). Instrumentation and method for ultrahigh resolution field desorption ionization Fourier transformion cyclotron resonance mass spectrometry of non-polar species. Anal. Chem. 77, 1317–1324.

    Article  CAS  Google Scholar 

  24. Senko, M.W., S.C. Beu, and F.W. McLafferty (1995). Automated assignment of charge states from resolved isotopic peaks for multiply charged ions. J Am. Soc. Mass Spectrom. 6, 52–56.

    Article  CAS  Google Scholar 

  25. Shi, S.D.-H., C.L. Hendrickson, and A.G. Marshall (1998). Counting individual sulfur atoms in a protein by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry: Experimental resolution of isotopic fine structure in proteins. Proc. Nat. Acad. Sci. U.S. A 95(20), 11532–11537.

    Article  CAS  Google Scholar 

  26. Marshall, A.G., C.L. Hendrickson, and G.S. Jackson (1998). Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass Spectrom. Rev. 17, 1–35.

    Article  CAS  Google Scholar 

  27. Ledford, E.B., Jr., D.L. Rempel, and M.L. Gross (1984). Space charge effects in Fourier transform mass spectrometry. Mass calibration. Anal. Chem. 56, 2744–2748.

    Article  CAS  Google Scholar 

  28. Shi, S.D.-H., J.J. Drader, M.A. Freitas, C.L. Hendrickson, and A.G. Marshall (2000). Comparison and interconversion of the two most common frequency-to-mass calibration functions for Fourier transform ion cyclotron resonance mass spectrometry. Int. J. Mass Spectrom. 195/196, 591–598.

    Article  CAS  Google Scholar 

  29. McLafferty, F.W. and F. Turecek (1993). Interpretation of Mass Spectra. University Science Books, Sausalito, CA 371.

    Google Scholar 

  30. Qian, K., R.P. Rodgers, C.L. Hendrickson, M.R. Emmett, and A.G. Marshall (2001). Reading chemical fine print: Resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of heavy petroleum crude oil. Energy Fuels 15, 492–498.

    Article  CAS  Google Scholar 

  31. Qian, K., W.K. Robbins, C.A. Hughey, H.J. Cooper, R.P. Rodgers, and A.G. Marshall (2001). Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high field Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 15, 1505–1511.

    Article  CAS  Google Scholar 

  32. Hughey, C.A., C.L. Hendrickson, R.P. Rodgers, and A.G. Marshall (2001). Elemental composition analysis of processed and unprocessed diesel fuel by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 15, 1186–1193.

    Article  CAS  Google Scholar 

  33. Rodgers, R.P., C.L. Hendrickson, M.R. Emmett, A.G. Marshall, M.A. Greaney, and K. Qian (2001). Molecular characterization of petroporphyrins in crude oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Can. J. Chem. 79, 546–551.

    Article  CAS  Google Scholar 

  34. Hughey, C.A., R.P. Rodgers, A.G. Marshall, K. Qian, and W.R. Robbins (2002). Identification of acidic NSO compounds in crude oils of different geochemical origins by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Org. Geochem. 33, 743–759.

    Article  CAS  Google Scholar 

  35. Wu, Z., S. Jernström, C.A. Hughey, R.P. Rodgers, and A.G. Marshall (2003). Resolution of 10,000 compositionally distinct components in polar coal extracts by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 17, 946–953.

    Article  CAS  Google Scholar 

  36. Hughey, C.A., R.P. Rodgers, A.G. Marshall, K. Qian, C.C. Walters, and P. Mankiewicz (2004). Acidic and neutral polar NSO compounds in smackover oils of different thermal maturity revealed by electrospray high field Fourier transform ion cyclotron resonance mass spectrometry. Org. Geochem. 35, 863–880.

    Article  CAS  Google Scholar 

  37. Wu, Z., R.P. Rodgers, and A.G. Marshall (2004). Compositional determination of acidic species in Illinois 6 coal extracts by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 18, 1424–1428.

    Article  CAS  Google Scholar 

  38. Wu, Z., R.P. Rodgers, A.G. Marshall, J.J. Strohm, and C. Song (2005). Comparative compositional analysis of untreated and hydrotreated oil by electrospray ionization Fourier transformion cyclotron resonance mass spectrometry. Energy Fuels 19(3), 1072–1077.

    Article  CAS  Google Scholar 

  39. Wu, Z., R.P. Rodgers, and A.G. Marshall (2005). ESI FT-ICR mass spectral analysis of coal liquefaction products. Fuel 84(14–15), 1790–1797.

    Article  CAS  Google Scholar 

  40. Müller, H., J.T. Andersson, and W. Schrader (2005). Characterization of high-molecular-weight sulfur-containing aromatics in vacuum residues using Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 77, 2536–2543.

    Article  Google Scholar 

  41. Barman, B.N., V.L. Cebolla, and L. Membrado (2000). Chromatographic techniques for petroleum and related products. Crit. Rev. Anal. Chem. 30(2–3), 75–120.

    Article  CAS  Google Scholar 

  42. Boduszynski, M.M., R.J. Hurtubise, T.W Allen, and H.F. Silver (1983). Liquid chromatography/field ionization mass spectrometry in the analysis of high-boiling and nondistillable coal liquids for hydrocarbons. Anal. Chem. 55(2), 225–231.

    Article  CAS  Google Scholar 

  43. Conceicao Oliveira, E.V.d.C., M. Cecilia, A.R.V. Sant’Ana Lopes, M. Goreti, and E. Bastos Caramao (2000). Ion-exchange resins in the isolation of nitrogen compounds from petroleum residues. Crit. Rev. Anal. Chem. 30(2–3), 75–120.

    Google Scholar 

  44. Rudzinski, W.E. and T.M. Aminabhavi (2000). A Review on extraction and identification of crude oil and related products using supercritical fluid technology. Energy Fuels 14(2), 464–75.

    Article  CAS  Google Scholar 

  45. Roussis, S.G. (1999). Exhaustive determination of hydrocarbon compound type distributions by high resolution mass spectrometry. Rapid Commun. Mass Spectrom. 13(11), 1031–1051.

    Article  CAS  Google Scholar 

  46. Lundanes, E. and T. Greibrokk (1994). Separation of fuels, heavy fractions, and crude oils into compound classes: a review. J High Resolut. Chromatogr. 17(4), 197–202.

    Article  CAS  Google Scholar 

  47. Li, M., S.R. Larter, D. Stoddart, and M. Bjoroey (1992). Liquid chromatographic separation schemes for pyrrole and pyridine nitrogen aromatic heterocycle fractions from crude oils suitable for rapid characterization of geochemical samples. Anal. Chem. 64(13), 1337–44.

    Article  CAS  Google Scholar 

  48. Carbognani, L. and A. Izquierdo (1989). Preparative and automated compound class separation of Venezuelan vacuum residua by high-performance liquid chromatography. J Chromatogr. 484, 399–408.

    Article  CAS  Google Scholar 

  49. Grizzle, P.L. and D.M. Sablotny (1986). Automated liquid chromatographic compound class group-type separation of crude oils and bitumens using chemically bonded silica-NH2. Anal. Chem. 58(12), 2389–95.

    Article  CAS  Google Scholar 

  50. Drushel, H.V. and A.L. Sommers (1966). Isolation and identification of nitrogen compounds in petroleum. Anal. Chem. 38(1), 19–28.

    Article  CAS  Google Scholar 

  51. Radke, M., H. Willsch, and D. Welte, H (1984). Class separation of aromatic compounds in rock extracts and fossil fuels by liquid chromatography. Anal. Chem. 56(13), 2538–46.

    Article  CAS  Google Scholar 

  52. Selucky, M., T. Ruo, Y. Chu, and O.P. Strausz (1978). Chromatographic studies on oil sand bitumens. Advances in chemistry series, Anal. Chem. Liq. Fuel Sources 170, 117–27.

    CAS  Google Scholar 

  53. Stenson, A.C., A.G. Marshall, and W.T. Cooper (2003). Exact masses and chemical formulas of individual suwannee river fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra. Anal. Chem. 75, 1275–1284.

    Article  CAS  Google Scholar 

  54. Kim, S.W., L.A. Kaplan, R. Benner, and P.O. Hatcher (2004). Hydrogen-deficient molecules in natural riverine water samples-Evidence for the existence of black carbon in DOM. Marine Chem. 92, 224–234.

    Article  Google Scholar 

  55. Purcell, J.M., R.P. Rodgers, C.L. Hendrickson, and A.G. Marshall (2004). Atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry for analysis of nonpolar hydrocarbons. In: 52nd American Society for Mass Spectrometry Annual conference on Mass spectrometry and Allied Topics, Nashville, TN.

    Google Scholar 

  56. Schaub, T.M., C.L. Hendrickson, K. Qian, J.P. Quinn, and A.G. Marshall (2003). High-resolution field desorption ionization Fourier transform ion cyclotron resonance high-resolution mass analysis of non-polar molecules. Anal. Chem. 75, 2172–2176.

    Article  CAS  Google Scholar 

  57. Schaub, T.M., H.B. Linden, C.L. Hendrickson, and A.G Marshall (2004). Continuous flow sample introduction for field desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 18, 1641–1644.

    Article  CAS  Google Scholar 

  58. Miyabayashi, K., Y. Naito, K. Tsujimoto, and M. Miyake (2002). Structure characterization of petroleum vacuum residues by in-beam El Fourier transform ion cyclotron resonance mass spectrometry. Int. J. Mass Spectrom. 221(2), 93–105.

    Article  CAS  Google Scholar 

  59. Roussis, S.G. and R. Proulx (2002). Molecular weight distributions of heavy aromatic petroleum fractions by Ag+ electrospray ionization mass spectrometry. Anal. Chem. 74(6), 1408–1414.

    Article  CAS  Google Scholar 

  60. Roussis, S.G. and R. Proulx (2004). Probing the molecular weight distributions of non-boiling petroleum fractions by Ag+ electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 18(15), 1761–75.

    Article  CAS  Google Scholar 

  61. Rudzinski, W.E., K. Zhou, and X. Luo (2004). Mass spectrometric characterization of organosul-fur compounds using palladium(II) as a sensitivity-enhancing reagent. Energy Fuels 18(1), 16–21.

    Article  CAS  Google Scholar 

  62. Cunico, R.L., E.Y. Sheu, and O.C. Mullins (2004). Molecular weight measurement of UG8 asphaltene using APCI mass spectroscopy. Petrol. Sci. Technol. 22(7–8), 787–798.

    Article  CAS  Google Scholar 

  63. Nali, M. and A. Manclossi (1995). Size exclusion chromatography and vapor pressure osmometry in the determination of asphaltene molecular weight. Fuel Sci. Technol. Int. 13(10), 1251–1264.

    CAS  Google Scholar 

  64. Speight, J.G. (2001). Handbook of petroleum analysis. In: J.D. Winefordner (ed.), Chemical Analysis: A Series of Monographs on Analytical Chemistry and its Applications, Vol. 158. John Wiley and Sons, NY, p. 489.

    Google Scholar 

  65. Strausz, O.P, PA. Peng, and J. Murgich (2002). About the colloidal nature of asphaltenes and the MW of covalent monomeric units. Energy Fuels 16(4), 809–822.

    Article  CAS  Google Scholar 

  66. Lang, I. and P. Vavrecka (1981). Standardization of VPO asphaltene molecular weight. Fuel 60(12), 1176–1177.

    Article  CAS  Google Scholar 

  67. Algelt, K.H. and M.M. Boduszynski (1994). Compositional Analysis: Dream and Reality. In: K.H. Algelt and M.M. Boduszynski (eds.), Composition and Analysis of Heavy Petroleum Fractions, Dekker, NY, p. 495.

    Google Scholar 

  68. Sheu, E.Y. (2002). Petroleum asphaltene-properties, characterization, and issues. Energy Fuels 16(1), 74–82.

    Article  CAS  Google Scholar 

  69. Chen, R., X. Cheng, D.W. Mitchell, S.A. Hofstadler, Q. Wu, A.L. Rockwood, M.G. Sherman, and R.D. Smith (1995). Trapping, detection, and mass determination of coliphage T4 DNA ions of 108 Da by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 67, 1159–1163.

    Article  CAS  Google Scholar 

  70. Videler, H., L.L. Hag, A.R.C. McKay, C.L. Hanson, and C.V. Robinson (2005). Mass spectrometry of intact ribosomes. FEES Lett. 579, 943–947.

    Article  CAS  Google Scholar 

  71. Del Rio, J.C. and R.P. Philp (1999). Field ionization mass spectrometric study of high molecular weight hydrocarbons in a crude oil and a solid bitumen. Org. Geochem. 30(5), 279–286.

    Article  Google Scholar 

  72. Groenzin, H. and O.C. Mullins (1999). Asphaltene molecular size and structure. J. Phys. Chem. A 103, 11237–11245.

    Article  CAS  Google Scholar 

  73. Groenzin, H. and O.C. Mullins (2000). Molecular size and structure of asphaltenes from various sources. Energy Fuels 14, 677–684.

    Article  CAS  Google Scholar 

  74. Buch, L., H. Groenzin, E. Buenrostro-Gonzalez, S.I. Andersen, C. Lira-Galeana, and O.C. Mullins (2003). Molecular size of asphaltene fractions obtained from residuum hydrotreatment. Fuel 82, 1075–84.

    Article  CAS  Google Scholar 

  75. Buenrostro-Gonzalez, E., H. Groenzin, C. Lira-Galeana, and O.C. Mullins (2001). The overriding chemical principles that define asphaltenes. Energy Fuels 15, 972–978.

    Article  CAS  Google Scholar 

  76. Tanaka, R., S. Sato, T. Takanohashi, J.E. Hunt, and R.E. Winans (2004). Analysis of the molecular weight distribution of petroleum asphaltenes using laser desorption-mass spectrometry. Energy Fuels 18(5), 1405–1413.

    Article  CAS  Google Scholar 

  77. Robins, C. and P.A. Limbach (2003). The use of nonpolar matrices for matrix-assisted laser desorption/ionization mass spectrometric analysis of high boiling crude oil fractions. Rapid Commun. Mass Spectrom. 17(24), 2839–2845.

    Article  CAS  Google Scholar 

  78. Merino-Garcia, D. and S.I. Andersen (2005). Calorimetric evidence about the application of the concept of CMC to asphaltene self-association. J Dispersion Sci. Technol. 26(2), 217–225.

    Article  CAS  Google Scholar 

  79. Andreatta, G., N. Bostrom, and O.C. Mullins (2005). High-Q ultrasonic determination of the critical nanoaggregate concentration of asphaltenes and the critical micelle concentration of standard surfactants. Langmuir 21(7), 2728–2736.

    Article  CAS  Google Scholar 

  80. Andersen, S.I. and K.S. Birdi (1991). Aggregation of asphaltenes as determined by calorimetry. J. Colloid Interface Sci. 142(2), 497–502.

    Article  CAS  Google Scholar 

  81. Andersen, S.I. and S.D. Christensen (2000). The critical micelle concentration of asphaltenes as measured by calorimetry. Energy Fuels 14(1), 38–42.

    Article  CAS  Google Scholar 

  82. Sheu, E.Y., D.A. Storm, and M.B. Shields (1995). Adsorption kinetics of asphaltenes at toluene/acid solution interface. Fuel 74(10), 1475–9.

    Article  CAS  Google Scholar 

  83. Mahler, H.R. and E.H. Cordes (1996). Proteins: Classification, properties and purification. Biological Chemistry. Harper & Row Publishers, pp. 18–20.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Rodgers, R.P., Marshall, A.G. (2007). Petroleomics: Advanced Characterization of Petroleum-Derived Materials by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS). In: Mullins, O.C., Sheu, E.Y., Hammami, A., Marshall, A.G. (eds) Asphaltenes, Heavy Oils, and Petroleomics. Springer, New York, NY. https://doi.org/10.1007/0-387-68903-6_3

Download citation

Publish with us

Policies and ethics