Skip to main content

Functions of Rab GTPases in organelle biogenesis

  • Chapter
  • First Online:
Regulatory Mechanisms of Intracellular Membrane Transport

Part of the book series: Topics in Current Genetics ((TCG,volume 10))

  • 73 Accesses

Abstract

Rab GTPases regulate diverse aspects of the biogenesis of secretory and endocytic organelles. The conformational changes that accompany GTP binding and hydrolysis by Rab are harnessed to recruit and activate specific effector proteins that regulate vesicle tethering and fusion, cargo sorting, and cytoskeleton-dependent organelle transport. We review recent progress in understanding how Rab GTPases are regulated and how they regulate membrane trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • 1. Albert S, Gallwitz D (1999) Two new members of a family of Ypt/Rab GTPase activating proteins. Promiscuity of substrate recognition. J Biol Chem 274:33186-33189

    Google Scholar 

  • 2. Albert S, Will E, Gallwitz D (1999) Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases. EMBO J 18:5216-5225

    CAS  PubMed  Google Scholar 

  • 3. Alexandrov K, Horiuchi H, Steele-Mortimer O, Seabra MC, Zerial M (1994) Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes. EMBO J 13:5262-5273

    CAS  PubMed  Google Scholar 

  • 4. Allan BB, Moyer BD, Balch WE (2000) Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289:444-448

    CAS  PubMed  Google Scholar 

  • 5. Alto NM, Soderling J, Scott JD (2002) Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J Cell Biol 158:659-668

    CAS  PubMed  Google Scholar 

  • 6. Aridor M, Balch WE (1996) Timing is everything. Nature 383:220-221

    CAS  PubMed  Google Scholar 

  • 7. Barbero P, Bittova L, Pfeffer SR (2002) Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J Cell Biol 156:511-518

    Article  CAS  PubMed  Google Scholar 

  • 8. Barbieri MA, Kong C, Chen PI, Horazdovsky BF, Stahl PD (2003) The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis. J Biol Chem 278:32027-32036

    Google Scholar 

  • 9. Barroso M, Nelson DS, Sztul E (1995) Transcytosis-associated protein (TAP)/p115 is a general fusion factor required for binding of vesicles to acceptor membranes. Proc Natl Acad Sci USA 92:527-531

    Google Scholar 

  • 10. Benli M, Doring F, Robinson DG, Yang X, Gallwitz D (1996) Two GTPase isoforms, Ypt31p and Ypt32p, are essential for Golgi function in yeast. EMBO J 15:6460-6475

    CAS  PubMed  Google Scholar 

  • 11. Bernards A (2003) GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim Biophys Acta 1603:47-82

    CAS  PubMed  Google Scholar 

  • 12. Brennwald P, Novick P (1993) Interactions of three domains distinguishing the ras-related GTP-binding proteins Ypt1 and Sec4. Nature 362:560-563

    Article  CAS  PubMed  Google Scholar 

  • 13. Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack B, Zerial M (1992) The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70:715-728

    CAS  PubMed  Google Scholar 

  • 14. Burd CG, Emr SD (1998) Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol Cell 2:157-162

    Article  CAS  PubMed  Google Scholar 

  • 15. Burd CG, Peterson M, Cowles CR, Emr SD (1997) A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast. Mol Biol Cell 8:1089-1104

    CAS  PubMed  Google Scholar 

  • 16. Calero M, Chen CZ, Zhu W, Winand N, Havas KA, Gilbert PM, Burd CG, Collins RN (2003) Dual prenylation is required for Rab protein localization and function. Mol Biol Cell 14:1852-1867

    CAS  PubMed  Google Scholar 

  • 17. Calero M, Collins RN (2002) Saccharomyces cerevisiae Pra1p/Yip3p interacts with Yip1p and Rab proteins. Biochem Biophys Res Commun 290:676-681

    Article  CAS  PubMed  Google Scholar 

  • 18. Calero M, Whittaker GR, Collins RN (2001) Yop1p, the yeast homolog of the polyposis locus protein 1, interacts with Yip1p and negatively regulates cell growth. J Biol Chem 276:12100-12112

    Google Scholar 

  • 19. Calero M, Winand NJ, Collins RN (2002) Identification of the novel proteins Yip4p and Yip5p as Rab GTPase interacting factors. FEBS Lett 515:89-98

    CAS  PubMed  Google Scholar 

  • 20. Cantalupo G, Alifano P, Roberti V, Bruni CB, Bucci C (2001) Rab-interacting lysosomal protein (RILP): the Rab7 effector required for transport to lysosomes. EMBO J 20:683-693

    CAS  PubMed  Google Scholar 

  • 21. Cao X, Ballew N, Barlowe C (1998) Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J 17:2156-2165

    CAS  PubMed  Google Scholar 

  • 22. Carroll KS, Hanna J, Simon I, Krise J, Barbero P, Pfeffer SR (2001) Role of Rab9 GTPase in facilitating receptor recruitment by TIP47. Science 292:1373-1376

    Article  CAS  PubMed  Google Scholar 

  • 23. Chavrier P, Gorvel JP, Stelzer E, Simons K, Gruenberg J, Zerial M (1991) Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature 353:769-772

    CAS  PubMed  Google Scholar 

  • 24. Chou JH, Jahn R (2000) Binding of Rab3A to synaptic vesicles. J Biol Chem 275:9433-9440

    Google Scholar 

  • 25. Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, Yip SC, Waterfield MD, Backer JM, Zerial M (1999) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1:249-252

    Google Scholar 

  • 26. Collins RN, Brennwald P, Garrett M, Lauring A, Novick P (1997) Interactions of nucleotide release factor Dss4p with Sec4p in the post-Golgi secretory pathway of yeast. J Biol Chem 272:18281-18289

    Google Scholar 

  • 27. Constantinescu AT, Rak A, Alexandrov K, Esters H, Goody RS, Scheidig AJ (2002) Rab-subfamily-specific regions of Ypt7p are structurally different from other RabGTPases. Structure (Camb) 10:569-579

    Google Scholar 

  • 28. D’Adamo P, Welzl H, Papadimitriou S, Raffaele di Barletta M, Tiveron C, Tatangelo L, Pozzi L, Chapman PF, Knevett SG, Ramsay MF, Valtorta F, Leoni C, Menegon A, Wolfer DP, Lipp HP, Toniolo D (2002) Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice. Hum Mol Genet 11:2567-2580

    Article  PubMed  Google Scholar 

  • 29. Dascher C, Ossig R, Gallwitz D, Schmitt HD (1991) Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily. Mol Cell Biol 11:872-885

    CAS  PubMed  Google Scholar 

  • 30. De Renzis S, Sonnichsen B, Zerial M (2002) Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nat Cell Biol 4:124-133

    Google Scholar 

  • 31. Desnos C, Schonn JS, Huet S, Tran VS, El-Amraoui A, Raposo G, Fanget I, Chapuis C, Menasche G, de Saint Basile G, Petit C, Cribier S, Henry JP, Darchen F (2003) Rab27A and its effector MyRIP link secretory granules to F-actin and control their motion towards release sites. J Cell Biol 163:559-570

    Article  CAS  PubMed  Google Scholar 

  • 32. Detter JC, Zhang Q, Mules EH, Novak EK, Mishra VS, Li W, McMurtrie EB, Tchernev VT, Wallace MR, Seabra MC, Swank RT, Kingsmore SF (2000) Rab geranylgeranyl transferase alpha mutation in the gunmetal mouse reduces Rab prenylation and platelet synthesis. Proc Natl Acad Sci USA 97:4144-4149

    Google Scholar 

  • 33. Dirac-Svejstrup AB, Soldati T, Shapiro AD, Pfeffer SR (1994) Rab-GDI presents functional rab9 to the intracellular transport machinery and contributes selectivity to rab9 membrane recruitment. J Biol Chem 269:15427-15430

    Google Scholar 

  • 34. Dirac-Svejstrup AB, Sumizawa T, Pfeffer SR (1997) Identification of a GDI displacement factor that releases endosomal rab GTPases from rab-GDI. EMBO J 16:465-472

    Article  CAS  PubMed  Google Scholar 

  • 35. Dollar G, Struckhoff E, Michaud J, Cohen RS (2002) Rab11 polarization of the Drosophila oocyte: a novel link between membrane trafficking, microtubule organization, and oskar mRNA localization and translation. Development 129:517-526

    CAS  PubMed  Google Scholar 

  • 36. Duden R (2003) ER-to-Golgi transport: COP I and COP II function (Review). Mol Membr Biol 20:197-207

    Article  CAS  PubMed  Google Scholar 

  • 37. Dumas JJ, Zhu Z, Connolly JL, Lambright DG (1999) Structural basis of activation and GTP hydrolysis in Rab proteins. Structure Fold Des 7:413-423

    Article  CAS  PubMed  Google Scholar 

  • 38. Dunn B, Stearns T, Botstein D (1993) Specificity domains distinguish the ras-related GTPases Ypt1 and Sec4. Nature 362:563-565

    Article  CAS  PubMed  Google Scholar 

  • 39. Echard A, Jollivet F, Martinez O, Lacapere JJ, Rousselet A, Janoueix-Lerosey I, Goud B (1998) Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279:580-585

    Article  CAS  PubMed  Google Scholar 

  • 40. Edinger AL, Cinalli RM, Thompson CB (2003) Rab7 prevents growth factor-independent survival by inhibiting cell-autonomous nutrient transporter expression. Dev Cell 5:571-582

    Article  CAS  PubMed  Google Scholar 

  • 41. Eggenschwiler JT, Espinoza E, Anderson KV (2001) Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412:194-198

    Article  CAS  PubMed  Google Scholar 

  • 42. Esters H, Alexandrov K, Constantinescu AT, Goody RS, Scheidig AJ (2000) High-resolution crystal structure of S. cerevisiae Ypt51(DeltaC15)-GppNHp, a small GTP-binding protein involved in regulation of endocytosis. J Mol Biol 298:111-121

    CAS  PubMed  Google Scholar 

  • 43. Fukuda M, Kuroda TS (2002) Slac2-c (synaptotagmin-like protein homologue lacking C2 domains-c), a novel linker protein that interacts with Rab27, myosin Va/VIIa, and actin. J Biol Chem 277:43096-43103

    Google Scholar 

  • 44. Fukui K, Sasaki T, Imazumi K, Matsuura Y, Nakanishi H, Takai Y (1997) Isolation and characterization of a GTPase activating protein specific for the Rab3 subfamily of small G proteins. J Biol Chem 272:4655-4658

    Google Scholar 

  • 45. Gao XD, Albert S, Tcheperegine SE, Burd CG, Gallwitz D, Bi E (2003) The GAP activity of Msb3p and Msb4p for the Rab GTPase Sec4p is required for efficient exocytosis and actin organization. J Cell Biol 162:635-646

    Article  CAS  PubMed  Google Scholar 

  • 46. Gaullier JM, Simonsen A, D’Arrigo A, Bremnes B, Stenmark H, Aasland R (1998) FYVE fingers bind PtdIns(3)P. Nature 394:432-433

    Article  CAS  PubMed  Google Scholar 

  • 47. Geppert M, Bolshakov VY, Siegelbaum SA, Takei K, De Camilli P, Hammer RE, Sudhof TC (1994) The role of rab3A in neurotransmitter release. Nature 369:493-497

    CAS  PubMed  Google Scholar 

  • 48. Gilbert PM, Burd CG (2001) GDP dissociation inhibitor domain II required for Rab GTPase recycling. J Biol Chem 276:8014-8020

    Google Scholar 

  • 49. Goldenring JR, Ray GS, Lee JR (1999) Rab11 in dysplasia of Barrett’s epithelia. Yale J Biol Med 72:113-120

    CAS  PubMed  Google Scholar 

  • 50. Gomes AQ, Ali BR, Ramalho JS, Godfrey RF, Barral DC, Hume AN, Seabra MC (2003) Membrane targeting of Rab GTPases is influenced by the prenylation motif. Mol Biol Cell 14:1882-1899

    CAS  PubMed  Google Scholar 

  • 51. Goody RS, Hofmann-Goody W (2002) Exchange factors, effectors, GAPs and motor proteins: common thermodynamic and kinetic principles for different functions. Eur Biophys J 31:268-274

    Article  CAS  PubMed  Google Scholar 

  • 52. Guo W, Roth D, Walch-Solimena C, Novick P (1999) The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J 18:1071-1080

    Article  CAS  PubMed  Google Scholar 

  • 53. Han L, Colicelli J (1995) A human protein selected for interference with Ras function interacts directly with Ras and competes with Raf1. Mol Cell Biol 15:1318-1323

    CAS  PubMed  Google Scholar 

  • 54. Hoogenraad CC, Akhmanova A, Howell SA, Dortland BR, De Zeeuw CI, Willemsen R, Visser P, Grosveld F, Galjart N (2001) Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes. EMBO J 20:4041-4054

    Article  CAS  PubMed  Google Scholar 

  • 55. Hutt DM, Da-Silva LF, Chang LH, Prosser DC, Ngsee JK (2000) PRA1 inhibits the extraction of membrane-bound rab GTPase by GDI1. J Biol Chem 275:18511-18519

    Google Scholar 

  • 56. Itoh T, Watabe A, Toh EA, Matsui Y (2002) Complex formation with Ypt11p, a rab-type small GTPase, is essential to facilitate the function of Myo2p, a class V myosin, in mitochondrial distribution in Saccharomyces cerevisiae. Mol Cell Biol 22:7744-7757

    Article  CAS  PubMed  Google Scholar 

  • 57. Jedd G, Mulholland J, Segev N (1997) Two new Ypt GTPases are required for exit from the yeast trans-Golgi compartment. J Cell Biol 137:563-580

    Article  CAS  PubMed  Google Scholar 

  • 58. Jordens I, Fernandez-Borja M, Marsman M, Dusseljee S, Janssen L, Calafat J, Janssen H, Wubbolts R, Neefjes J (2001) The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr Biol 11:1680-1685

    CAS  PubMed  Google Scholar 

  • 59. Kapfhamer D, Valladares O, Sun Y, Nolan PM, Rux JJ, Arnold SE, Veasey SC, Bucan M (2002) Mutations in Rab3a alter circadian period and homeostatic response to sleep loss in the mouse. Nat Genet 32:290-295

    Google Scholar 

  • 60. Lian JP, Stone S, Jiang Y, Lyons P, Ferro-Novick S (1994) Ypt1p implicated in v-SNARE activation. Nature 372:698-701

    CAS  PubMed  Google Scholar 

  • 61. Loftus SK, Larson DM, Baxter LL, Antonellis A, Chen Y, Wu X, Jiang Y, Bittner M, Hammer JA, 3rd, Pavan WJ (2002) Mutation of melanosome protein RAB38 in chocolate mice. Proc Natl Acad Sci USA 99:4471-4476

    Google Scholar 

  • 62. Luan P, Balch WE, Emr SD, Burd CG (1999) Molecular dissection of guanine nucleotide dissociation inhibitor function in vivo. Rab-independent binding to membranes and role of Rab recycling factors. J Biol Chem 274:14806-14817

    Google Scholar 

  • 63. Marks MS, Seabra MC (2001) The melanosome: membrane dynamics in black and white. Nat Rev Mol Cell Biol 2:738-748

    Google Scholar 

  • 64. Martincic I, Peralta ME, Ngsee JK (1997) Isolation and characterization of a dual prenylated Rab and VAMP2 receptor. J Biol Chem 272:26991-26998

    Google Scholar 

  • 65. Matanis T, Akhmanova A, Wulf P, Del Nery E, Weide T, Stepanova T, Galjart N, Grosveld F, Goud B, De Zeeuw CI, Barnekow A, Hoogenraad CC (2002) Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nat Cell Biol 4:986-992

    Google Scholar 

  • 66. Matesic LE, Yip R, Reuss AE, Swing DA, O’Sullivan TN, Fletcher CF, Copeland NG, Jenkins NA (2001) Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice. Proc Natl Acad Sci USA 98:10238-10243

    Google Scholar 

  • 67. Maurer-Stroh S, Washietl S, Frank E (2003) Protein prenyltransferases: anchor size, pseudogenes and parasites. Biol Chem 384:977-989

    CAS  PubMed  Google Scholar 

  • 68. Mayer A, Wickner W (1997) Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J Cell Biol 136:307-317

    CAS  PubMed  Google Scholar 

  • 69. McBride HM, Rybin V, Murphy C, Giner A, Teasdale R, Zerial M (1999) Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98:377-386

    Article  CAS  PubMed  Google Scholar 

  • 70. McLauchlan H, Newell J, Morrice N, Osborne A, West M, Smythe E (1998) A novel role for Rab5-GDI in ligand sequestration into clathrin-coated pits. Curr Biol 8:34-45

    Article  CAS  PubMed  Google Scholar 

  • 71. Menasche G, Ho CH, Sanal O, Feldmann J, Tezcan I, Ersoy F, Houdusse A, Fischer A, de Saint Basile G (2003) Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J Clin Invest 112:450-456

    CAS  PubMed  Google Scholar 

  • 72. Menasche G, Pastural E, Feldmann J, Certain S, Ersoy F, Dupuis S, Wulffraat N, Bianchi D, Fischer A, Le Deist F, de Saint Basile G (2000) Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 25:173-176

    Google Scholar 

  • 73. Mercer JA, Seperack PK, Strobel MC, Copeland NG, Jenkins NA (1991) Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349:709-713

    Article  CAS  PubMed  Google Scholar 

  • 74. Merithew E, Hatherly S, Dumas JJ, Lawe DC, Heller-Harrison R, Lambright DG (2001) Structural plasticity of an invariant hydrophobic triad in the switch regions of Rab GTPases is a determinant of effector recognition. J Biol Chem 276:13982-13988

    Google Scholar 

  • 75. Morsomme P, Riezman H (2002) The Rab GTPase Ypt1p and tethering factors couple protein sorting at the ER to vesicle targeting to the Golgi apparatus. Dev Cell 2:307-317

    Article  CAS  PubMed  Google Scholar 

  • 76. Moyer BD, Allan BB, Balch WE (2001) Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis–Golgi tethering. Traffic 2:268-276

    CAS  PubMed  Google Scholar 

  • 77. Murray JT, Panaretou C, Stenmark H, Miaczynska M, Backer JM (2002) Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic 3:416-427

    Article  CAS  PubMed  Google Scholar 

  • 78. Nie Z, Hirsch DS, Randazzo PA (2003) Arf and its many interactors. Curr Opin Cell Biol 15:396-404

    Article  CAS  PubMed  Google Scholar 

  • 79. Nielsen E, Christoforidis S, Uttenweiler-Joseph S, Miaczynska M, Dewitte F, Wilm M, Hoflack B, Zerial M (2000) Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 151:601-612

    Article  CAS  PubMed  Google Scholar 

  • 80. Nielsen E, Severin F, Backer JM, Hyman AA, Zerial M (1999) Rab5 regulates motility of early endosomes on microtubules. Nat Cell Biol 1:376-382

    Google Scholar 

  • 81. Ortiz D, Medkova M, Walch-Solimena C, Novick P (2002) Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J Cell Biol 157:1005-1015

    Article  CAS  PubMed  Google Scholar 

  • 82. Ostermeier C, Brunger AT (1999) Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell 96:363-374

    Article  CAS  PubMed  Google Scholar 

  • 83. Otomo A, Hadano S, Okada T, Mizumura H, Kunita R, Nishijima H, Showguchi-Miyata J, Yanagisawa Y, Kohiki E, Suga E, Yasuda M, Osuga H, Nishimoto T, Narumiya S, Ikeda JE (2003) ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics. Hum Mol Genet 12:1671-1687

    Article  CAS  PubMed  Google Scholar 

  • 84. Papini E, Satin B, Bucci C, de Bernard M, Telford JL, Manetti R, Rappuoli R, Zerial M, Montecucco C (1997) The small GTP binding protein rab7 is essential for cellular vacuolation induced by Helicobacter pylori cytotoxin. EMBO J 16:15-24

    Article  CAS  PubMed  Google Scholar 

  • 85. Pastural E, Barrat FJ, Dufourcq-Lagelouse R, Certain S, Sanal O, Jabado N, Seger R, Griscelli C, Fischer A, de Saint Basile G (1997) Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat Genet 16:289-292

    Google Scholar 

  • 86. Patki V, Lawe DC, Corvera S, Virbasius JV, Chawla A (1998) A functional PtdIns(3)P-binding motif. Nature 394:433-434

    Article  CAS  PubMed  Google Scholar 

  • 87. Pei L, Peng Y, Yang Y, Ling XB, Van Eyndhoven WG, Nguyen KC, Rubin M, Hoey T, Powers S, Li J (2002) PRC17, a novel oncogene encoding a Rab GTPase-activating protein, is amplified in prostate cancer. Cancer Res 62:5420-5424

    CAS  PubMed  Google Scholar 

  • 88. Pereira-Leal JB, Seabra MC (2000) The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J Mol Biol 301:1077-1087

    Article  CAS  PubMed  Google Scholar 

  • 89. Peterson MR, Burd CG, Emr SD (1999) Vac1p coordinates rab and phosphatidylinositol 3-kinase signaling in Vps45p-dependent vesicle docking/fusion at the endosome. Curr Biol 9:159-162

    Article  CAS  PubMed  Google Scholar 

  • 90. Pfeffer S (2003) Membrane domains in the secretory and endocytic pathways. Cell 112:507-517

    Article  CAS  PubMed  Google Scholar 

  • 91. Pfeffer SR (2001) Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol 11:487-491

    Article  CAS  PubMed  Google Scholar 

  • 92. Piddini E, Vincent JP (2003) Modulation of developmental signals by endocytosis: different means and many ends. Curr Opin Cell Biol 15:474-481

    Article  CAS  PubMed  Google Scholar 

  • 93. Provance DW, James TL, Mercer JA (2002) Melanophilin, the product of the leaden locus, is required for targeting of myosin-Va to melanosomes. Traffic 3:124-132

    Article  CAS  PubMed  Google Scholar 

  • 94. Rak A, Fedorov R, Alexandrov K, Albert S, Goody RS, Gallwitz D, Scheidig AJ (2000) Crystal structure of the GAP domain of Gyp1p: first insights into interaction with Ypt/Rab proteins. EMBO J 19:5105-5113

    Article  CAS  PubMed  Google Scholar 

  • 95. Rak A, Pylypenko O, Durek T, Watzke A, Kushnir S, Brunsveld L, Waldmann H, Goody RS, Alexandrov K (2003) Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase. Science 302:646-650

    Article  CAS  PubMed  Google Scholar 

  • 96. Ricard CS, Jakubowski JM, Verbsky JW, Barbieri MA, Lewis WM, Fernandez GE, Vogel M, Tsou C, Prasad V, Stahl PD, Waksman G, Cheney CM (2001) Drosophila rab GDI mutants disrupt development but have normal Rab membrane extraction. Genesis 31:17-29

    Article  CAS  PubMed  Google Scholar 

  • 97. Richardson PM, Zon LI (1995) Molecular cloning of a cDNA with a novel domain present in the tre-2 oncogene and the yeast cell cycle regulators BUB2 and cdc16. Oncogene 11:1139-1148

    CAS  PubMed  Google Scholar 

  • 98. Rybin V, Ullrich O, Rubino M, Alexandrov K, Simon I, Seabra C, Goody R, Zerial M (1996) GTPase activity of Rab5 acts as a timer for endocytic membrane fusion. Nature 383:266-269

    Article  CAS  PubMed  Google Scholar 

  • 99. Sacher M, Barrowman J, Wang W, Horecka J, Zhang Y, Pypaert M, Ferro-Novick S (2001) TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport. Mol Cell 7:433-442

    Article  CAS  PubMed  Google Scholar 

  • 100. Salminen A, Novick PJ (1987) A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 49:527-538

    Article  CAS  PubMed  Google Scholar 

  • 101. Seabra MC, Brown MS, Goldstein JL (1993) Retinal degeneration in choroideremia: deficiency of rab geranylgeranyl transferase. Science 259:377-381

    CAS  PubMed  Google Scholar 

  • 102. Seabra MC, Goldstein JL, Sudhof TC, Brown MS (1992) Rab geranylgeranyl transferase: a multisubunit enzyme that prenylates GTP-binding proteins terminating in Cys-X-Cys or Cys-Cys. J Biol Chem 267:14497-14503

    Google Scholar 

  • 103. Seachrist JL, Laporte SA, Dale LB, Babwah AV, Caron MG, Anborgh PH, Ferguson SS (2002) Rab5 association with the angiotensin II type 1A receptor promotes Rab5 GTP binding and vesicular fusion. J Biol Chem 277:679-685

    Google Scholar 

  • 104. Short B, Preisinger C, Korner R, Kopajtich R, Byron O, Barr FA (2001) A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic. J Cell Biol 155:877-883

    Article  CAS  PubMed  Google Scholar 

  • 105. Short B, Preisinger C, Schaletzky J, Kopajtich R, Barr FA (2002) The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Curr Biol 12:1792-1795

    Article  CAS  PubMed  Google Scholar 

  • 106. Sincock PM, Ganley IG, Krise JP, Diederichs S, Sivars U, O’Connor B, Ding L, Pfeffer SR (2003) Self-assembly is important for TIP47 function in mannose 6-phosphate receptor transport. Traffic 4:18-25

    Article  CAS  PubMed  Google Scholar 

  • 107. Sivars U, Aivazian D, Pfeffer SR (2003) Yip3 catalyses the dissociation of endosomal Rab-GDI complexes. Nature 425:856-859

    Article  CAS  PubMed  Google Scholar 

  • 108. Soldati T, Rancano C, Geissler H, Pfeffer SR (1995) Rab7 and Rab9 are recruited onto late endosomes by biochemically distinguishable processes. J Biol Chem 270:25541-25548

    Google Scholar 

  • 109. Sonnichsen B, De Renzis S, Nielsen E, Rietdorf J, Zerial M (2000) Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 149:901-914

    Article  CAS  PubMed  Google Scholar 

  • 110. Stein MP, Feng Y, Cooper KL, Welford AM, Wandinger-Ness A (2003) Human VPS34 and p150 are Rab7 interacting partners. Traffic 4:754-771

    Article  CAS  PubMed  Google Scholar 

  • 111. Stenmark H, Parton RG, Steele-Mortimer O, Lutcke A, Gruenberg J, Zerial M (1994) Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J 13:1287-1296

    CAS  PubMed  Google Scholar 

  • 112. Stinchcombe JC, Barral DC, Mules EH, Booth S, Hume AN, Machesky LM, Seabra MC, Griffiths GM (2001) Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J Cell Biol 152:825-834

    Article  CAS  PubMed  Google Scholar 

  • 113. Strom M, Hume AN, Tarafder AK, Barkagianni E, Seabra MC (2002) A family of Rab27-binding proteins. Melanophilin links Rab27a and myosin Va function in melanosome transport. J Biol Chem 277:25423-25430

    Google Scholar 

  • 114. Stroupe C, Brunger AT (2000) Crystal structures of a Rab protein in its inactive and active conformations. J Mol Biol 304:585-598

    Article  CAS  PubMed  Google Scholar 

  • 115. Tall GG, Barbieri MA, Stahl PD, Horazdovsky BF (2001) Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev Cell 1:73-82

    Article  CAS  PubMed  Google Scholar 

  • 116. Tisdale EJ (2003) Rab2 interacts directly with atypical protein kinase C (aPKC) iota/lambda and inhibits aPKCiota/lambda-dependent glyceraldehyde-3-phosphate dehydrogenase phosphorylation. J Biol Chem 278:52524-52530

    Article  CAS  PubMed  Google Scholar 

  • 117. Tisdale EJ, Balch WE (1996) Rab2 is essential for the maturation of pre-Golgi intermediates. J Biol Chem 271:29372-29379

    Article  CAS  PubMed  Google Scholar 

  • 118. Tisdale EJ, Jackson MR (1998) Rab2 protein enhances coatomer recruitment to pre-Golgi intermediates. J Biol Chem 273:17269-17277

    Article  CAS  PubMed  Google Scholar 

  • 119. Ullrich O, Stenmark H, Alexandrov K, Hubert L, Kaibuchi K, Sasaki T, Takai Y, Zerial M (1993) Rab GDP dissociation inhibitor as a general regulator for the membrane association of Rab proteins. J Biol Chem 268:18143-18150

    CAS  PubMed  Google Scholar 

  • 120. van Ijzendoorn SC, Tuvim MJ, Weimbs T, Dickey BF, Mostov KE (2002) Direct interaction between Rab3b and the polymeric immunoglobulin receptor controls ligand-stimulated transcytosis in epithelial cells. Dev Cell 2:219-228

    Article  PubMed  Google Scholar 

  • 121. Verhoeven K, De Jonghe P, Coen K, Verpoorten N, Auer-Grumbach M, Kwon JM, FitzPatrick D, Schmedding E, De Vriendt E, Jacobs A, Van Gerwen V, Wagner K, Hartung HP, Timmerman V (2003) Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am J Hum Genet 72:722-727

    Article  CAS  PubMed  Google Scholar 

  • 122. Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131:1191-1208

    Article  CAS  PubMed  Google Scholar 

  • 123. Wang L, Merz AJ, Collins KM, Wickner W (2003) Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion. J Cell Biol 160:365-374

    Article  CAS  PubMed  Google Scholar 

  • 124. Wang W, Ferro-Novick S (2002) A ypt32p exchange factor is a putative effector of ypt1p. Mol Biol Cell 13:3336-3343

    Article  CAS  PubMed  Google Scholar 

  • 125. Wang W, Sacher M, Ferro-Novick S (2000) TRAPP stimulates guanine nucleotide exchange on Ypt1p. J Cell Biol 151:289-296

    Article  CAS  PubMed  Google Scholar 

  • 126. Waselle L, Coppola T, Fukuda M, Iezzi M, El-Amraoui A, Petit C, Regazzi R (2003) Involvement of the Rab27 binding protein Slac2c/MyRIP in insulin exocytosis. Mol Biol Cell 14:4103-4113

    Article  CAS  PubMed  Google Scholar 

  • 127. Waters MG, Pfeffer SR (1999) Membrane tethering in intracellular transport. Curr Opin Cell Biol 11:453-459

    Article  CAS  PubMed  Google Scholar 

  • 128. Whyte JR, Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115:2627-2637

    CAS  PubMed  Google Scholar 

  • 129. Wilson SM, Yip R, Swing DA, O’Sullivan TN, Zhang Y, Novak EK, Swank RT, Russell LB, Copeland NG, Jenkins NA (2000) A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc Natl Acad Sci USA 97:7933-7938

    Google Scholar 

  • 130. Wu G, Yussman MG, Barrett TJ, Hahn HS, Osinska H, Hilliard GM, Wang X, Toyokawa T, Yatani A, Lynch RA, Robbins J, Dorn GW, 2nd (2001) Increased myocardial Rab GTPase expression: a consequence and cause of cardiomyopathy. Circ Res 89:1130-1137

    CAS  PubMed  Google Scholar 

  • 131. Wu XS, Rao K, Zhang H, Wang F, Sellers JR, Matesic LE, Copeland NG, Jenkins NA, Hammer JA III (2002) Identification of an organelle receptor for myosin-Va. Nat Cell Biol 4:271-278

    Google Scholar 

  • 132. Wurmser AE, Sato TK, Emr SD (2000) New component of the vacuolar class C-Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion. J Cell Biol 151:551-562

    Article  CAS  PubMed  Google Scholar 

  • 133. Yoshimura SI, Nakamura N, Barr FA, Misumi Y, Ikehara Y, Ohno H, Sakaguchi M, Mihara K (2001) Direct targeting of cis-Golgi matrix proteins to the Golgi apparatus. J Cell Sci 114:4105-4115

    CAS  PubMed  Google Scholar 

  • 134. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107-117

    Article  CAS  PubMed  Google Scholar 

  • 135. Zhou Y, Toth M, Hamman MS, Monahan SJ, Lodge PA, Boynton AL, Salgaller ML (2002) Serological cloning of PARIS-1: a new TBC domain-containing, immunogenic tumor antigen from a prostate cancer cell line. Biochem Biophys Res Commun 290:830-838

    Article  CAS  PubMed  Google Scholar 

  • 136. Zhu G, Liu J, Terzyan S, Zhai P, Li G, Zhang XC (2003) High resolution crystal structures of human Rab5a and five mutants with substitutions in the catalytically important phosphate-binding loop. J Biol Chem 278:2452-2460

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Burd .

Editor information

Sirkka Keränen Jussi Jäntti

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Burd, C.G., Collins, R.N. Functions of Rab GTPases in organelle biogenesis. In: Keränen, S., Jäntti, J. (eds) Regulatory Mechanisms of Intracellular Membrane Transport. Topics in Current Genetics, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b97781

Download citation

  • DOI: https://doi.org/10.1007/b97781

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22302-3

  • Online ISBN: 978-3-540-44476-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics