Skip to main content

Scientific and technical challenges for systems biology

  • Chapter
  • First Online:
Systems Biology

Part of the book series: Topics in Current Genetics ((TCG,volume 13))

Abstract

Systems biology is an emergent discipline, yet can be rooted back almost a century when pioneering thoughts on system-oriented views were discussed. System-level understanding of life has consistently been a subject of the broad scientific community. With the progress of various molecular biology and genomics research, combined with advances in control theory, software, and computer science, we are now able to tackle this problem with renewed perspectives and powerful techniques. One of the significant questions is what is underlying principles of living systems. This paper argues that ”robustness” is one of the fundamental properties of evolved biological systems and there are certain principles that govern biological systems at the system-level. Such a principle also provides us with insight into diseases and possible countermeasures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • 1. Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321-326

    Article  PubMed  Google Scholar 

  • 2. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397:168-171

    Article  PubMed  Google Scholar 

  • 3. Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38:364-374

    Article  PubMed  Google Scholar 

  • 4. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5:101-113

    Article  PubMed  Google Scholar 

  • 5. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913-917

    Article  PubMed  Google Scholar 

  • 6. Bertalanffy LV (1968) General System Theory. New York, George Braziller

    Google Scholar 

  • 7. Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381-387

    Google Scholar 

  • 8. Cannon W (1932) The Wisdom of the Body. New York, Norton

    Google Scholar 

  • 9. Carlson JM, Doyle J (1999) Highly optimized tolerance: a mechanism for power laws in designed systems. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60:1412-1427

    PubMed  Google Scholar 

  • 10. Carlson JM, Doyle J (2002) Complexity and robustness. Proc Natl Acad Sci USA 99 Suppl 1:2538-2545

    Article  Google Scholar 

  • 11. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15:3841-62

    Article  PubMed  Google Scholar 

  • 12. Cook DL, Farley JF, Tapscott SJ (2001) A basis for a visual language for describing archiving and analyzing functional models of complex biological systems. Genome Biol 2:RESEARCH0012

    Article  PubMed  Google Scholar 

  • 13. Csete ME, Doyle J (2004) Bow ties metabolism and disease. Trends Biotechnol 22:446-50

    Article  PubMed  Google Scholar 

  • 14. de Visser JA, Hermisson J, Wagner GP, Ancel Meyers L, Bagheri-Chaichian H, Blanchard JL, Chao L, Cheverud JM, Elena SF, Fontana W, Gibson G, Hansen TF, Krakauer D, Lewontin RC, Ofria C, Rice SH, von Dassow G, Wagner A, Whitlock MC (2003) Evolution and detection of genetics robustness. Evolution 57:1959-1972

    PubMed  Google Scholar 

  • 15. Dropulic B, Hermankova M, Pitha PM (1996) A conditionally replicating HIV-1 vector interferes with wild-type HIV-1 replication and spread. Proc Natl Acad Sci USA 93:11103-11108

    Article  PubMed  Google Scholar 

  • 16. Eldar A, Dorfman R, Weiss D, Ashe H, Shilo BZ, Barkai N (2002) Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419:304-308

    Article  PubMed  Google Scholar 

  • 17. Ferrell JE Jr (2002) Self-perpetuating states in signal transduction: positive feedback double-negative feedback and bistability. Curr Opin Cell Biol 14:140-148

    Article  PubMed  Google Scholar 

  • 18. Funahashi A, Kitano H (2003) Cell Designer: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1:159-162

    Article  Google Scholar 

  • 19. Guelzim N, Bottani S, Bourgine P, Kepes F (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31:60-63

    Article  PubMed  Google Scholar 

  • 20. Harris AL (2002) Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2:38-47

    Article  PubMed  Google Scholar 

  • 21. Hasty J, McMillen D, Collins JJ (2002) Engineered gene circuits. Nature 420:224-230

    Article  PubMed  Google Scholar 

  • 22. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle J, Kitano H (2002) The ERATO Systems Biology Workbench: enabling interaction and exchange between software tools for computational biology. Pac Symp Biocomput 450-461

    Google Scholar 

  • 23. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J; SBML Forum (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524-531

    Article  PubMed  Google Scholar 

  • 24. Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1):S233-S240

    PubMed  Google Scholar 

  • 25. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929-934

    Article  PubMed  Google Scholar 

  • 26. Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N (2002) Revealing modular organization in the yeast transcriptional network. Nat Genet 31:370-377

    PubMed  Google Scholar 

  • 27. Kirschner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci USA 95:8420-8427

    Article  PubMed  Google Scholar 

  • 28. Kitano H (2002a) Computational systems biology. Nature 420:206-210

    Article  PubMed  Google Scholar 

  • 29. Kitano H (2002b) Systems biology: a brief overview. Science 295:1662-1664

    Article  PubMed  Google Scholar 

  • 30. Kitano H (2003a) Cancer robustness: tumour tactics. Nature 426:125

    Article  PubMed  Google Scholar 

  • 31. Kitano H (2003b) A graphical notation for biochemical networks. Biosilico 1:169-176

    Article  Google Scholar 

  • 32. Kitano H (2004a) Biological robustness. Nat Rev Genet 5:826-837

    Article  PubMed  Google Scholar 

  • 33. Kitano H (2004b) Cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 4:227-235

    Article  PubMed  Google Scholar 

  • 34. Kitano H, Oda K, Kimura T, Matsuoka Y, Csete M, Doyle J, Muramatsu M (2004) Metabolic syndrome and robustness trade-offs. Diabetes 53(Suppl 3):S1-S10

    Google Scholar 

  • 35. Kohn KW (1999) Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 10:2703-2734

    PubMed  Google Scholar 

  • 36. Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U (2004) Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 36:147-150

    Article  PubMed  Google Scholar 

  • 37. Little JW, Shepley DP, Wert DW (1999) Robustness of a gene regulatory circuit. EMBO J 18:4299-4307

    Article  PubMed  Google Scholar 

  • 38. Maimon R, Browning S (2001) Diagrammatic notation and computational structure of gene networks. Proceedings of the Second International Conference on Systems Biology. Pasadena CA

    Google Scholar 

  • 39. Meir E, von Dassow G, Munro E, Odell GM (2002) Robustness flexibility and the role of lateral inhibition in the neurogenic network. Curr Biol 12:778-786

    Article  PubMed  Google Scholar 

  • 40. Oda K. Kimura T, Matsuoka Y, Funahashi A, Muramatsu H, Kitano H (2004) Molecular interaction map of a macrophage. AfCS Research Reports 2:1-12

    Google Scholar 

  • 41. Pirson I, Fortemaison N, Jacobs C, Dremier S, Dumont JE, Maenhaut C (2000) The visual display of regulatory information and networks. Trends Cell Biol 10:404-408

    Article  PubMed  Google Scholar 

  • 42. Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618-624

    Article  PubMed  Google Scholar 

  • 43. Rutherford SL (2003) Between genotype and phenotype: protein chaperones and evolvability. Nat Rev Genet 4:263-274

    Article  PubMed  Google Scholar 

  • 44. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336-342

    Article  PubMed  Google Scholar 

  • 45. Schlichting C, Pigliucci M (1998) Phenotypic Evolution: A Reaction Norm Perspective. Sunderland, Sinauer Associates Inc

    Google Scholar 

  • 46. Schlosser G, Wagner G (2004) Modularity in Development and Evolution. Chicago, The University of Chicago Press

    Google Scholar 

  • 47. Sharp FR, Bernaudin M (2004) HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 5:437-448

    Article  PubMed  Google Scholar 

  • 48. Siegal ML, Bergman A (2002) Waddington's canalization revisited: developmental stability and evolution. Proc Natl Acad Sci USA 99:10528-10532

    Article  PubMed  Google Scholar 

  • 49. Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell physiology. Nat Rev Mol Cell Biol 2:908-916

    Article  PubMed  Google Scholar 

  • 50. von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity network is a robust developmental module. Nature 406:188-192

    Article  PubMed  Google Scholar 

  • 51. Waddington CH (1957) The Strategy of the Genes: a Discussion of some Aspects of Theoretical Biology. New York, Macmillan

    Google Scholar 

  • 52. Wagner GP, Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution 50:967-976

    Google Scholar 

  • 53. Weinberger LS, Schaffer DV, Arkin AP (2003) Theoretical design of a gene therapy to prevent AIDS but not human immunodeficiency virus type 1 infection. J Virol 77:10028-10036

    Article  PubMed  Google Scholar 

  • 54. Wiener N (1948) Cybernetics: or Control and Communication in the Animal and the Machine. Cambridge, The MIT Press

    Google Scholar 

  • 55. Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 97:4649-4653

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Kitano .

Editor information

Lila Alberghina H.V. Westerhoff

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Kitano, H. Scientific and technical challenges for systems biology. In: Alberghina, L., Westerhoff, H. (eds) Systems Biology. Topics in Current Genetics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b137124

Download citation

Publish with us

Policies and ethics