Skip to main content

Biosynthesis and function of 1-methyladenosine in transfer RNA

  • Chapter
  • First Online:
Fine-Tuning of RNA Functions by Modification and Editing

Part of the book series: Topics in Current Genetics ((TCG,volume 12))

Abstract

Determining the function of single nucleotide modifications in tRNA has been elusive because so many tRNA modification enzymes are not essential for cell viability, making it difficult to do functional studies in vivo. The enzyme that catalyzes the formation of 1-methyladenosine modification at position 58 (m1A58) in most yeast tRNAs is essential for yeast cell viability, which has made it possible to explore the role of this single modification in tRNA structure and function. In addition to reviewing the role of m1A in tRNAs from prokaryotes to eukaryotes and mitochondria to cytoplasm, this chapter discusses the importance of m1A58 in maintaining the 3-dimensional structure of yeast initiator tRNAMet. Exploiting the genetics available in yeast, it has been discovered that initiator tRNAMet lacking m1A58 is eliminated from cells by 3’ polyadenylation and 3’ to 5’ exonuclease degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • 1. Agris PF (1996) The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. Prog Nucleic Acid Res Mol Biol 53:79-129

    Google Scholar 

  • 2. Anderson J, Phan L, Hinnebusch AG (2000) The Gcd10p/Gcd14p complex is the essential two-subunit tRNA(1-methyladenosine) methyltransferase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:5173-5178

    Article  Google Scholar 

  • 3. Anderson J, Phan L, Cuesta R, Carlson BA, Pak M, Asano K, Bjork GR, Tamame M, Hinnebusch AG (1998) The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev 12:3650-3662

    Google Scholar 

  • 4. Araki Y, Takahashi S, Kobayashi T, Kajiho H, Hoshino S, Katada T (2001) Ski7p G protein interacts with the exosome and the Ski complex for 3’-to-5’ mRNA decay in yeast. EMBO J 20:4684-4693

    Article  Google Scholar 

  • 5. Basavappa R, Sigler PB (1991) The 3 Å crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. EMBO J 10:3105-3111

    Google Scholar 

  • 6. Ben-Artzi H, Shemesh J, Zeelon E, Amit B, Kleiman L, Gorecki M, Panet A (1996) Molecular analysis of the second template switch during reverse transcription of the HIV RNA template. Biochemistry 35:10549-10557

    Article  Google Scholar 

  • 7. Björk GR (1995) Biosynthesis and function of modified nucleosides. In: Söll D, RajBhandary, U. L. (ed) tRNA: Structure Biosynthesis and Function. ASM Press, pp 165-206

    Google Scholar 

  • 8. Brown JT, Bai X, Johnson AW (2000) The yeast antiviral proteins Ski2p, Ski3p, and Ski8p exist as a complex in vivo. RNA 6:449-457

    Article  Google Scholar 

  • 9. Bujnicki JM (2001) In silico analysis of the tRNA:m1A58 methyltransferase family: homology-based fold prediction and identification of new members from Eubacteria and Archaea. FEBS Lett 507:123-127

    Article  Google Scholar 

  • 10. Burnett BP, McHenry CS (1997) Posttranscriptional modification of retroviral primers is required for late stages of DNA replication. Proc Natl Acad Sci USA 94:7210-7215

    Article  Google Scholar 

  • 11. Butler JS (2002) The yin and yang of the exosome. Trends Cell Biol 12:90-96

    Article  Google Scholar 

  • 12. Calvo O, Cuesta R, Anderson J, Gutierrez N, Garcia-Barrio MT, Hinnebusch AG, Tamame M (1999) GCD14p, a repressor of GCN4 translation, cooperates with Gcd10p and Lhp1p in the maturation of initiator methionyl-tRNA in Saccharomyces cerevisiae. Mol Cell Biol 19:4167-4181

    Google Scholar 

  • 13. Castano IB, Heath-Pagliuso S, Sadoff BU, Fitzhugh DJ, Christman MF (1996) A novel family of TRF (DNA topoisomerase I-related function) genes required for proper nuclear segregation. Nucleic Acids Res 24:2404-2410

    Article  Google Scholar 

  • 14. Constantinesco F, Motorin Y, Grosjean H (1999) Transfer RNA modification enzymes from Pyrococcus furiosus: detection of the enzymatic activities in vitro. Nucleic Acids Res 27:1308-1315

    Article  Google Scholar 

  • 15. de la Cruz J, Kressler D, Tollervey D, Linder P (1998) Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3’ end formation of 5.8S rRNA in Saccharomyces cerevisiae. EMBO J 17:1128-1140

    Article  Google Scholar 

  • 16. Droogmans L, Roovers M, Bujnicki JM, Tricot C, Hartsch T, Stalon V, Grosjean H (2003) Cloning and characterization of tRNA (m1A58) methyltransferase (TrmI) from Thermus thermophilus HB27, a protein required for cell growth at extreme temperatures. Nucleic Acids Res 31:2148-2156

    Article  Google Scholar 

  • 17. Dunn DB (1961) The occurrence of 1-methyladenine in ribonucleic acid. Biochim Biophys Acta 46:198-200

    Article  Google Scholar 

  • 18. Dunn DB (1963) The isolation of 1-methyladenylic acid and 7-methylguanylic acid from ribonucleic acid. Biochem J 86:14P-15P

    Google Scholar 

  • 19. Eschenlauer JB, Kaiser MW, Gerlach VL, Brow DA (1993) Architecture of a yeast U6 RNA gene promoter. Mol Cell Biol 13:3015-3026

    Google Scholar 

  • 20. Gilboa E, Mitra SW, Goff S, Baltimore D (1979) A detailed model of reverse transcription and tests of crucial aspects. Cell 18:93-100

    Article  Google Scholar 

  • 21. Glick JM, Leboy PS (1977) Purification and properties of tRNA(adenine-1)-methyltransferase from rat liver. J Biol Chem 252:4790-4795

    Google Scholar 

  • 22. Grosjean H, Benne R (1998) Modification and editing of RNA. ASM Press, Washington, DC

    Google Scholar 

  • 23. Grosjean H, Constantinesco F, Foiret D, Benachenhou N (1995) A novel enzymatic pathway leading to 1-methylinosine modification in Haloferax volcanii tRNA. Nucleic Acids Res 23:4312-4319

    Google Scholar 

  • 24. Grosjean H, Edqvist J, Straby KB, Giege R (1996) Enzymatic formation of modified nucleosides in tRNA: dependence on tRNA architecture. J Mol Biol 255:67-85

    Article  Google Scholar 

  • 25. Gupta A, Kumar PH, Dineshkumar TK, Varshney U, Subramanya HS (2001) Crystal structure of Rv2118c: an AdoMet-dependent methyltransferase from Mycobacterium tuberculosis H37Rv. J Mol Biol 312:381-391

    Article  Google Scholar 

  • 26. Helm M, Brule H, Degoul F, Cepanec C, Leroux JP, Giege R, Florentz C (1998) The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucleic Acids Res 26:1636-1643

    Article  Google Scholar 

  • 27. Helm M, Giege R, Florentz C (1999) A Watson-Crick base-pair-disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys. Biochemistry 38:13338-13346

    Article  Google Scholar 

  • 28. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180-183

    Article  Google Scholar 

  • 29. HsuChen CC, Cleaves GR, Dubin DT (1983) A major lysine tRNA with a CUU anticodon in insect mitochondria. Nucleic Acids Res 11:8659-8662

    Google Scholar 

  • 30. Inoue K, Mizuno T, Wada K, Hagiwara M (2000) Novel RING finger proteins, Air1p and Air2p, interact with Hmt1p and inhibit the arginine methylation of Npl3p. J Biol Chem 275:32793-32799

    Article  Google Scholar 

  • 31. Jacobs JS, Anderson AR, Parker RP (1998) The 3’ to 5’ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3’ to 5’ exonucleases of the exosome complex. EMBO J 17:1497-1506

    Article  Google Scholar 

  • 32. Kadaba S, Krueger A, Trice T, Krecic AM, Hinnebusch AG, Anderson J (2004) Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev 18:1227-1240

    Article  Google Scholar 

  • 33. Kadowaki T, Chen S, Hitomi M, Jacobs E, Kumagai C, Liang S, Schneiter R, Singleton D, Wisniewska J, Tartakoff AM (1994) Isolation and characterization of Saccharomyces cerevisiae mRNA transport-defective (mtr) mutants. J Cell Biol 126:649-659

    Article  Google Scholar 

  • 34. Krogan NJ, Peng WT, Cagney G, Robinson MD, Haw R, Zhong G, Guo X, Zhang X, Canadien V, Richards DP, Beattie BK, Lalev A, Zhang W, Davierwala AP, Mnaimneh S, Starostine A, Tikuisis AP, Grigull J, Datta N, Bray JE, Hughes TR, Emili A, Greenblatt JF (2004) High-definition macromolecular composition of yeast RNA-processing complexes. Mol Cell 13:225-239

    Article  Google Scholar 

  • 35. Krzyzosiak WJ, Marciniec T, Wiewiorowski M, Romby P, Ebel JP, Giege R (1988) Characterization of the lead(II)-induced cleavages in tRNAs in solution and effect of the Y-base removal in yeast tRNAPhe. Biochemistry 27:5771-5777

    Google Scholar 

  • 36. Li Z, Reimers S, Pandit S, Deutscher MP (2002) RNA quality control: degradation of defective transfer RNA. EMBO J 21:1132-1138

    Article  Google Scholar 

  • 37. Liang S, Hitomi M, Hu YH, Liu Y, Tartakoff AM (1996) A DEAD-box-family protein is required for nucleocytoplasmic transport of yeast mRNA. Mol Cell Biol 16:5139-5146

    Google Scholar 

  • 38. Marck C, Grosjean H (2002) tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA 8:1189-1232

    Article  Google Scholar 

  • 39. Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3’$to$5’ exoribonucleases. Cell 91:457-466

    Article  Google Scholar 

  • 40. Mitchell P, Tollervey D (2000) Musing on the structural organization of the exosome complex. Nat Struct Biol 7:843-846

    Article  Google Scholar 

  • 41. Morin A, Auxilien S, Senger B, Tewari R, Grosjean H (1998) Structural requirements for enzymatic formation of threonylcarbamoyladenosine (t6A) in tRNA: an in vivo study with Xenopus laevis oocytes. RNA 4:24-37

    Google Scholar 

  • 42. Ohtsuki T, Kawai G, Watanabe Y, Kita K, Nishikawa K, Watanabe K (1996) Preparation of biologically active Ascaris suum mitochondrial tRNAMet with a TV-replacement loop by ligation of chemically synthesized RNA fragments. Nucleic Acids Res 24:662-667

    Article  Google Scholar 

  • 43. Raettig R, Kersten H, Weissenbach J, Dirheimer G (1977) Methylation of an adenosine in the D-loop of specific transfer RNAs from yeast by a procaryotic tRNA (adenine-1) methyltransferase. Nucleic Acids Res 4:1769-1782

    Google Scholar 

  • 44. RajBhandary UL, Stuart A, Faulkner RD, Chang SH, Khorana HG (1966) Nucleotide sequence studies on yeast phenylalanine sRNA. Cold Spring Harb Symp Quant Biol 31:425-434

    Google Scholar 

  • 45. Randerath E, Agrawal HP, Randerath K (1981) Rat liver mitochondrial lysine tRNA (anticodon U*UU) contains a rudimentary D-arm and 2 hypermodified nucleotides in its anticodon loop. Biochem Biophys Res Commun 103:739-744

    Google Scholar 

  • 46. Renda MJ, Rosenblatt JD, Klimatcheva E, Demeter LM, Bambara RA, Planelles V (2001) Mutation of the methylated tRNA(Lys)(3) residue A58 disrupts reverse transcription and inhibits replication of human immunodeficiency virus type 1. J Virol 75:9671-9678

    Article  Google Scholar 

  • 47. Roovers M, Wouters J, Bujnicki JM, Tricot C, Stalon V, Grosjean H, Droogmans L (2004) A primordial RNA modification enzyme: the case of tRNA (m1A) methyltransferase. Nucleic Acids Res 32:465-476

    Article  Google Scholar 

  • 48. Sadoff BU, Heath-Pagliuso S, Castano IB, Zhu Y, Kieff FS, Christman MF (1995) Isolation of mutants of Saccharomyces cerevisiae requiring DNA topoisomerase I. Genetics 141:465-479

    Google Scholar 

  • 49. Saitoh S, Chabes A, McDonald WH, Thelander L, Yates JR, Russell P (2002) Cid13 is a cytoplasmic poly(A) polymerase that regulates ribonucleotide reductase mRNA. Cell 109:563-573

    Article  Google Scholar 

  • 50. Sakurai M OT, Watanabe Y, Watanabe, K (2001) Requirement of modified residue m1A9 for EF-Tu binding to nematode mitochodrial tRNA lacking the T arm. Nucleic Acids Res Suppl 1:237-238

    Google Scholar 

  • 51. Sengupta R, Vainauskas S, Yarian C, Sochacka E, Malkiewicz A, Guenther RH, Koshlap KM, Agris PF (2000) Modified constructs of the tRNA TPsiC domain to probe substrate conformational requirements of m(1)A(58) and m(5)U(54) tRNA methyltransferases. Nucleic Acids Res 28:1374-1380

    Article  Google Scholar 

  • 52. Söll D, RajBhandary U (1995) tRNA structure, biosynthesis, and function. ASM Press, Washington, D.C.

    Google Scholar 

  • 53. Sprinzl M, Horn C, Brown M, Loudovitch A, Steinberg S (1998) Compilation of tRNA sequences and sequenes of tRNA genes. Nucleic Acids Res 26:148-153

    Article  Google Scholar 

  • 54. van Hoof A, Frischmeyer PA, Dietz HC, Parker R (2002) Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295:2262-2264

    Article  Google Scholar 

  • 55. van Hoof A, Parker R (1999) The exosome: a proteasome for RNA? Cell 99:347-350

    Article  Google Scholar 

  • 56. van Hoof A, Staples RR, Baker RE, Parker R (2000) Function of the ski4p (Csl4p) and Ski7p proteins in 3’-to-5’ degradation of mRNA. Mol Cell Biol 20:8230-8243

    Article  Google Scholar 

  • 57. Varshney U, Ramesh V, Madabushi A, Gaur R, Subramanya HS, RajBhandary UL (2004) Mycobacterium tuberculosis Rv2118c codes for a single-component homotetrameric m1A58 tRNA methyltransferase. Nucleic Acids Res 32:1018-1027

    Article  Google Scholar 

  • 58. Walowsky C, Fitzhugh DJ, Castano IB, Ju JY, Levin NA, Christman MF (1999) The topoisomerase-related function gene TRF4 affects cellular sensitivity to the antitumor agent camptothecin. J Biol Chem 274:7302-7308

    Article  Google Scholar 

  • 59. Wang Z, Castano IB, De Las Penas A, Adams C, Christman MF (2000) Pol kappa: A DNA polymerase required for sister chromatid cohesion [see comments]. Science 289:774-779

    Article  Google Scholar 

  • 60. Watanabe Y, Tsurui H, Ueda T, Furushima R, Takamiya S, Kita K, Nishikawa K, Watanabe K (1994) Primary and higher order structures of nematode (Ascaris suum) mitochondrial tRNAs lacking either the T or D stem. J Biol Chem 269:22902-22906

    Google Scholar 

  • 61. Yamazaki N, Hori H, Ozawa K, Nakanishi S, Ueda T, Kumagai I, Watanabe K, Nishikawa K (1992) Purification and characterization of tRNA(adenosine-1-)- methyltransferase from Thermus thermophilus HB27. Nucleic Acids Symp Ser 27:141-142

    Google Scholar 

  • 62. Yokoyama SN(1995) Modified Nucleosides and Codon Recognition. In: Söll D, RajBhandary, U. L. (ed) tRNA Structure, Biosynthesis, and Function. ASM Press, pp 207-223

    Google Scholar 

  • 63. Zagryadskaya EI, Doyon FR, Steinberg SV (2003) Importance of the reverse Hoogsteen base pair 54-58 for tRNA function. Nucleic Acids Res 31:3946-3953

    Article  Google Scholar 

  • 64. Zagryadskaya EI, Kotlova N, Steinberg SV (2004) Key elements in maintenance of the tRNA L-shape. J Mol Biol 340:435-444

    Article  Google Scholar 

  • 65. Zuo Y, Deutscher MP (2001) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 29:1017-1026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Anderson .

Editor information

Henri Grosjean

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Anderson, J.T., Droogmans, L. Biosynthesis and function of 1-methyladenosine in transfer RNA. In: Grosjean, H. (eds) Fine-Tuning of RNA Functions by Modification and Editing. Topics in Current Genetics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b106364

Download citation

Publish with us

Policies and ethics