Skip to main content

Automation Techniques in Immunological Disorders

  • Chapter
  • First Online:
Automated Diagnostic Techniques in Medical Microbiology
  • 38 Accesses

Abstract

Immunological disorders are consequences of malfunctioned immune system. These involve the altered functioning of T- and B- cell lymphocytes either in a particular tissue or multiple organs. Once, considered as rare disorders, but now days, they have become common because of the adverse changes in the genetic, environmental and epigenetic factors. The phenotype of these diseases is generally similar or overlaps with each other which make them difficult to diagnose by clinical methods. Moreover, the manual diagnostic strategies used for the analysis of these diseases are slow, time consuming and capable of detecting small number of samples. This necessitates the usage of automated diagnostic methods for the betterment of prognosis, treatment and management of these disorders. With the rapidly evolving technology, substantial automation has been reported in diagnostic techniques like Indirect Immunofluorscence, Chemiluminiscent assays, Flow cytometry gating, Genome Sequencing. The current chapter is emphasized to summarize the currently available automated techniques being employed in large work load laboratories for the assessment of disease diagnosis, prognosis, severity and activity. The strength and applicability of these methods are also being discussed. These methods, being reproducible, provide more specific and sensitive results with reduced turnaround time. The dubious new cellular population can also be discovered via these advanced techniques. Because of enormous repercussions, automated techniques have gained popularity in clinical laboratories working on immunological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 119.00
Price excludes VAT (USA)
Hardcover Book
USD 159.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith DA, Germolec DR. Introduction to immunology and autoimmunity. Environ Health Perspect. 1999;107 Suppl 5(Suppl 5):661–5.

    Google Scholar 

  2. Watson S. Autoimmune diseases: types, symptoms, causes and more. Health line; 2019.

    Google Scholar 

  3. Geha RS, Notarangelo LD, Casanova JL, et al. International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J Allergy Clin Immunol. 2007;120(4):776–94.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kumar A, Teuber SS, Gershwin ME. Current perspectives on primary immunodeficiency diseases. Clin Dev Immunol. 2006;13(2-4):223–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar U, Kanjilal M, Ramakrishnan L, et al. Prevalence of pre-clinical autoimmunity in the normal adult population residing in a metropolitan city of India: a cross-sectional study. Eur J Rheumatol. 2020;8(2):79–83.

    Article  PubMed Central  Google Scholar 

  6. National Research Council (US) Subcommittee on Immunotoxicology. Biologic markers in Immunotoxicology. Washington (DC): National Academies Press; 1992.

    Google Scholar 

  7. Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Med. 2015;278(4):369–95.

    Article  CAS  PubMed  Google Scholar 

  8. Gregersen PK, Olsson LM. Recent advances in the genetics of autoimmune disease. Annu Rev Immunol. 2009;27:363–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hill NJ, King C, Flodstrom-Tullberg M. Recent acquisitions on the genetic basis of autoimmune disease. Front Biosci. 2008;13:4838–51.

    Article  CAS  PubMed  Google Scholar 

  10. Vojdani A. A potential link between environmental triggers and autoimmunity. Autoimmune Dis. 2014;2014:437231.

    PubMed  PubMed Central  Google Scholar 

  11. McPherson RA, Pincus MR. Henry’s clinical diagnosis and management by laboratory methods. 21st ed. Philadelphia, PA: WB Saunders; 2007. p. 40–1.

    Google Scholar 

  12. Rich RR, Fleischer TA, Shearer WT, et al. Clinical immunology principles and practice. 3rd. ed; Chapters 96–98.

    Google Scholar 

  13. Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365(22):2110–21.

    Article  CAS  PubMed  Google Scholar 

  14. Colglazier CL, Sutej PG. Laboratory testing in the rheumatic diseases: a practical review. South Med J. 2005;98(2):185–91.

    Article  PubMed  Google Scholar 

  15. Castro C, Gourley M. Diagnostic testing and interpretation of tests for autoimmunity. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S238–47.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Breda L, Nozzi M, Sanctis D, et al. Laboratory tests in the diagnosis and follow-up of pediatric rheumatic diseases: an update. Semin Arthritis Rheum. 2010;40(1):53–72.

    Article  PubMed  Google Scholar 

  17. Reymond JL, Fluxa VS, Maillard N. Enzyme assays. Chem Comm. 2009;1:34–46.

    Google Scholar 

  18. Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Ann Rev Nutr. 2002;22:439–58.

    Article  CAS  Google Scholar 

  19. Subasic D, Karamehic J, Gavrankapetanovic F, et al. ELISA subtypization of anti-ENA autoantibodies in clinical management of autoimmune diseases in Bosnia and Herzegovina. Med Arh. 2009;63(6):312–6.

    PubMed  Google Scholar 

  20. Alem M, Moghadam S, Malki J, et al. Detection of autoantibodies to nuclear antigens by EIA and IF techniques. Allerg Immunol (Paris). 1997;29(7):188, 191–4.

    CAS  PubMed  Google Scholar 

  21. Tan EM, Smolen JS, McDougal JS, et al. A critical evaluation of enzyme immunoassay kits for detection of antinuclear autoantibodies of defined specificities. II. Potential for quantitation of antibody content. J Rheumatol. 2002;29(1):68–74.

    CAS  PubMed  Google Scholar 

  22. Lachmann PJ, Nicol P. Reaction mechanism of the alternative pathway of complement fixation. Lancet. 1973;1:465–7.

    Article  CAS  PubMed  Google Scholar 

  23. Betterle C, Zanchetta R. The immunofluorescence techniques in the diagnosis of endocrine autoimmune diseases. Auto Immun Highlights. 2012;3(2):67–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghanadan A, Saghazadeh A, Jahanzad I, et al. Clinical aspects of indirect immunofluorescence for autoimmune diseases. Expert Rev Clin Immunol. 2015;11(5):597–616.

    Article  CAS  PubMed  Google Scholar 

  25. Bonilla E, Francis L, Allam F, et al. Immunofluorescence microscopy is superior to fluorescent beads for detection of antinuclear antibody reactivity in systemic lupus erythematosus patients. Clin Immunol. 2007;124(1):18–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nifli AP, Notas G, Mamoulaki M, et al. Comparison of a multiplex, bead-based fluorescent assay an immunofluorescence methods for the detection of ANA and ANCA auto-antibodies in human serum. J Immunol Methods. 2006;311:189–97.

    Article  CAS  PubMed  Google Scholar 

  27. Fleisher TA. Basic principles and clinical applications of flow cytometry. In: Bethesda handbook of clinical hematology. Baltimore, MA: Lippincott Williams & Wilkins; 2005. p. 415–24.

    Google Scholar 

  28. Rostaing L, Tkaczuk J, Durand M, et al. Kinetics of intracytoplasmic Th1 and Th2 cytokine production assessed by flow cytometry following in vitro activation of peripheral blood mononuclear cells. Cytometry. 1999;35(4):318–28.

    Article  CAS  PubMed  Google Scholar 

  29. Lin JS, Hao TC, Lyou JY, et al. Clinical application of a flow cytometric direct antiglobulin test. Transfusion. 2009;49(7):1335–46.

    Article  CAS  PubMed  Google Scholar 

  30. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Omoyinmi E, Standing A, Keylock A, et al. A targeted nextgeneration sequencing gene panel for autoinflammation. Ann Rheum Dis. 2016;75:667.

    Article  Google Scholar 

  32. Omoyinmi E, Standing A, Keylock A, et al. Clinical impact of a targeted next-generation sequencing gene panel for autoinflammation and vasculitis. PLoS One. 2017;12(7):e0181874.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nakayama M, Oda H, Nakagawa K, et al. Accurate clinical genetic testing for autoinflammatory diseases using the next-generation sequencing platform MiSeq. Biochem Biophys Rep. 2016;9:146–52.

    PubMed  PubMed Central  Google Scholar 

  34. Rusmini M, Federici S, Caroli F, et al. Next-generation sequencing and its initial applications for molecular diagnosis of systemic auto-inflammatory diseases. Ann Rheum Dis. 2016;75(8):1550–7.

    Article  CAS  PubMed  Google Scholar 

  35. Kedar P, Dongerdiye R, Chandrakala S, Bargir UA, Madkaikar M. Targeted next-generation sequencing revealed a novel homozygous mutation in the LRBA gene causes severe haemolysis associated with inborn errors of immunity in an Indian family. Hematology. 2022;27(1):441–8.

    Article  CAS  PubMed  Google Scholar 

  36. Lionel AC, Costain G, Monfared N, et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med. 2018;20(4):435–43.

    Article  CAS  PubMed  Google Scholar 

  37. Belkadi A, Bolze A, Itan Y, et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A. 2015;11217:5473–8.

    Article  Google Scholar 

  38. Costain G, Jobling R, Walker S, et al. Periodic reanalysis of whole-genome sequencing data enhances the diagnostic advantage over standard clinical genetic testing. Eur J Hum Genet. 2018;26(5):740–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Almlöf JC, Nystedt S, Leonard D, et al. Whole-genome sequencing identifies complex contributions to genetic risk by variants in genes causing monogenic systemic lupus erythematosus. Hum Genet. 2019;138(2):141–50.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–43.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lezcano-Valverde JM, Salazar F, León L, et al. Development and validation of a multivariate predictive model for rheumatoid arthritis mortality using a machine learning approach. Sci Rep. 2017;7(1):10189.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Teschendorff AE. Avoiding common pitfalls in machine learning omic data science. Nat Mater. 2019;18(5):422–7.

    Article  CAS  PubMed  Google Scholar 

  43. Fatima M, Pasha M. Survey of machine learning algorithms for disease diagnostic. J Intell Learn Syst Appl. 2017;9:1–16.

    Google Scholar 

  44. Huang KP, Mullangi S, Guo Y, et al. Autoimmune, atopic, and mental health comorbid conditions associated with alopecia areata in the United States. JAMA Dermatol. 2013;149:789–94.

    Article  PubMed  Google Scholar 

  45. Sheth VM, Guo Y, Qureshi AA. Comorbidities associated with vitiligo: a ten-year retrospective study. Dermatology. 2013;227:311–5.

    Article  PubMed  Google Scholar 

  46. Chin CY, Hsieh SY, Tseng VS. eDRAM: effective early disease risk assessment with matrix factorization on a large-scale medical database: a case study on rheumatoid arthritis. PLoS One. 2018;13(11):e0207579.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mowry EM, Hedström AK, Gianfrancesco MA, et al. Incorporating machine learning approaches to assess putative environmental risk factors for multiple sclerosis. Mult Scler Relat Disord. 2018;24:135–41.

    Article  PubMed  Google Scholar 

  48. Weiss J, Kuusisto F, Boyd K, et al. Machine learning for treatment assignment: improving individualized risk attribution. AMIA Annu Symp Proc. 2015;2015:1306–15.

    PubMed  PubMed Central  Google Scholar 

  49. Briggs FB, Ramsay PP, Madden E, et al. Supervised machine learning and logistic regression identifies novel epistatic risk factors with PTPN22 for rheumatoid arthritis. Genes Immun. 2010;11(3):199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alaqtash M, Sarkodie-Gyan T, Yu H, et al. Automatic classification of pathological gait patterns using ground reaction forces and machine learning algorithms. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:453–7.

    PubMed  Google Scholar 

  51. Lopez C, Tucker S, Salameh T, et al. An unsupervised machine learning method for discovering patient clusters based on genetic signatures. J Biomed Inform. 2018;85:30–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lin C, Karlson EW, Canhao H, et al. Automatic prediction of rheumatoid arthritis disease activity from the electronic medical records. PLoS One. 2013;8(8):e69932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ostmeyer J, Christley S, Rounds WH, et al. Statistical classifiers for diagnosing disease from immune repertoires: a case study using multiple sclerosis. BMC Bioinformatics. 2017;18(1):401.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shrivastava VK, Londhe ND, Sonawane RS, et al. A novel approach to multiclass psoriasis disease risk stratification: machine learning paradigm. Biomed Signal Process Control. 2016;28:27–40.

    Article  Google Scholar 

  55. Kang T, Ding W, Zhang L, et al. A biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression data. BMC Bioinformatics. 2017;18(1):565.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chattopadhyay PK, Roederer M. Cytometry: today’s technology and tomorrow’s horizons. Methods. 2012;57(3):251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tanner SD, Baranov VI, Ornatsky OI, et al. An introduction to mass cytometry: fundamentals and applications. Cancer Immunol Immunother. 2013;62(5):955–65.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Aghaeepour N, Finak G, Hoos H, et al. Critical assessment of automated flow cytometry data analysis techniques. Nat Methods. 2013;10(3):228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gouttefangeas C, Chan C, Attig S, et al. Data analysis as a source of variability of the HLA-peptide multimer assay: from manual gating to automated recognition of cell clusters. Cancer Immunol Immunother. 2015;64(5):585–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen X, Hasan M, Libri V, et al. Automated flow cytometric analysis across large numbers of samples and cell types. Clin Immunol. 2015;157(2):249–60.

    Article  CAS  PubMed  Google Scholar 

  61. Ge Y, Sealfon SC. flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding. Bioinformatics. 2012;28(15):2052–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bruggner RV, Bodenmiller B, Dill DL, et al. Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci U S A. 2014;111(26):E2770–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Qiu P, Simonds EF, Bendall SC, et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol. 2011;29(10):886–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Malek M, Taghiyar MJ, Chong L, et al. flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification. Bioinformatics. 2015;31(4):606–7.

    Article  CAS  PubMed  Google Scholar 

  65. Sack U, Conrad K, Csernok E, et al. Autoantibody detection using indirect immunofluorescence on HEp-2 cells. Ann N Y Acad Sci. 2009;1173:166–73.

    Article  CAS  PubMed  Google Scholar 

  66. Rigon A, Soda P, Zennaro D, et al. Indirect immunofluorescence in autoimmune diseases: assessment of digital images for diagnostic purpose. Cytometry B Clin Cytom. 2007;72(6):472–7.

    Article  PubMed  Google Scholar 

  67. Kivity S, Gilburd B, Agmon-Levin N, et al. A novel automated indirect immunofluorescence autoantibody evaluation. Clin Rheumatol. 2012;31(3):503–9.

    Article  PubMed  Google Scholar 

  68. Rigon A, Infantino M, Merone M, et al. The inter-observer reading variability in anti-nuclear antibodies indirect (ANA) immunofluorescence test: a multicenter evaluation and a review of the literature. Autoimmun Rev. 2017;16(12):1224–9.

    Article  CAS  PubMed  Google Scholar 

  69. Egerer K, Roggenbuck D, Hiemann R, et al. Automated evaluation of autoantibodies on human epithelial-2 cells as an approach to standardize cell-based immunofluorescence tests. Arthritis Res Ther. 2010;12(2):R40.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Melegari A, Bonaguri C, Russo A, et al. A comparative study on the reliability of an automated system for the evaluation of cell-based indirect immunofluorescence. Autoimmun Rev. 2012;11(10):713–6.

    Article  CAS  PubMed  Google Scholar 

  71. Glory E, Murphy RF. Automated subcellular location determination and high-throughput microscopy. Dev Cell. 2007;12(1):7–16.

    Article  CAS  PubMed  Google Scholar 

  72. Bizzaro N, Antico A, Platzgummer S, et al. Automated antinuclear immunofluorescence antibody screening: a comparative study of six computer-aided diagnostic systems. Autoimmun Rev. 2014;13(3):292–8.

    Article  CAS  PubMed  Google Scholar 

  73. van Beers JJBC, Hahn M, Fraune J, et al. Performance analysis of automated evaluation of antinuclear antibody indirect immunofluorescent tests in a routine setting. Auto Immun Highlights. 2018;9(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gelpí C, Pérez E, Roldan C. Efficiency of a solid-phase chemiluminescence immunoassay for detection of antinuclear and cytoplasmic autoantibodies compared with gold standard immunoprecipitation. Auto Immun Highlights. 2014;5(2):47–54.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bentow C, Swart A, Wu J, et al. Clinical performance evaluation of a novel rapid response chemiluminescent immunoassay for the detection of autoantibodies to extractable nuclear antigens. Clin Chim Acta. 2013;424:141–7.

    Article  CAS  PubMed  Google Scholar 

  76. Bentow C, Lakos G, Rosenblum R, et al. Clinical performance evaluation of a novel, automated chemiluminescent immunoassay, QUANTA flash CTD screen plus. Immunol Res. 2015;61(1–2):110–6.

    Article  CAS  PubMed  Google Scholar 

  77. Fu Z, Liu H, Ju H. Flow-through multianalyte chemiluminescent immunosensing system with designed substrate zone-resolved technique for sequential detection of tumor markers. Anal Chem. 2006;78(19):6999–7005.

    Article  CAS  PubMed  Google Scholar 

  78. Tao X, Jiang H, Yu X, et al. An ultrasensitive chemiluminescence immunoassay of chloramphenicol based on gold nanoparticles and magnetic beads. Drug Test Anal. 2013;5(5):346–52.

    Article  CAS  PubMed  Google Scholar 

  79. Baker MJ, Hussain SR, Lovergne L, et al. Developing and understanding biofluid vibrational spectroscopy: a critical review. Chem Soc Rev. 2016;45(7):1803–18.

    Article  CAS  PubMed  Google Scholar 

  80. Baker MJ, Trevisan J, Bassan P, et al. Using fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9(8):1771–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bunaciu AA, Aboul-Enein HY, Fleschin S. Vibrational spectroscopy in clinical analysis. Appl Spectrosc Rev. 2015;50:176–91.

    Article  Google Scholar 

  82. Herzberg G. Infrared and Raman spectra of polyatomic molecules. Van Nostrand. 1945;1:2.

    Google Scholar 

  83. Biancolillo A, Marini F. Chemometric methods for spectroscopy-based pharmaceutical analysis. Front Chem. 2018;6:576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ganim Z, Chung HS, Smith AW, et al. Amide I two-dimensional infrared spectroscopy of proteins. Acc Chem Res. 2008;41(3):432–41.

    Article  CAS  PubMed  Google Scholar 

  85. Martin FL. Shining a new light into molecular workings. Nat Methods. 2011;8(5):385–7.

    Article  CAS  PubMed  Google Scholar 

  86. Old OJ, Fullwood LM, Scott RC, et al. Vibrational spectroscopy for cancer diagnostics. Anal Methods. 2014;6:3901–17.

    Article  CAS  Google Scholar 

  87. Firdous S, Nawaz M, Ahmed M, et al. Measurement of diabetic sugar concentration in human blood using Raman spectroscopy. Laser Phys. 2012;22:1090–4.

    Article  CAS  Google Scholar 

  88. Carvalho CS, Martin AA, Santo AME, et al. Rheumatoid arthritis study using Raman spectroscopy. Theor Chem Accounts. 2011;130:1211–20.

    Article  CAS  Google Scholar 

  89. Baker MJ, Byrne HJ, Chalmers J, et al. Clinical applications of infrared and Raman spectroscopy: state of play and future challenges. Analyst. 2018;143(8):1735–57.

    Article  CAS  PubMed  Google Scholar 

  90. Conrad K, Roggenbuck D, Reinhold D, et al. Autoantibody diagnostics in clinical practice. Autoimmun Rev. 2012;11(3):207–11.

    Article  CAS  PubMed  Google Scholar 

  91. Voigt J, Krause C, Rohwäder E, et al. Automated indirect immunofluorescence evaluation of antinuclear autoantibodies on HEp-2 cells. Clin Dev Immunol. 2012;2012:651058.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wiik AS, Høier-Madsen M, Forslid J, et al. Antinuclear antibodies: a contemporary nomenclature using HEp-2 cells. J Autoimmun. 2010;35(3):276–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, R. (2024). Automation Techniques in Immunological Disorders. In: Kumar, S., Kumar, A. (eds) Automated Diagnostic Techniques in Medical Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-99-9943-9_8

Download citation

Publish with us

Policies and ethics