Skip to main content

Automation Techniques in Clinical Virology

  • Chapter
  • First Online:
Automated Diagnostic Techniques in Medical Microbiology

Abstract

By providing quick and precise viral infection detection, diagnosis, and characterization, automation has transformed the field of virology. Virologists have been able to automate a number of laboratory activities, including sample collection, processing, analysis, and result interpretation, using the combination Biotechnology, Artificial Intelligence (AI), and Omics technology. Real-time monitoring of viral infections has been made possible by advance devices including aptasensors, biosensors, microfluidics, and lab-on-a-chip technologies. This has provided important insights into viral pathogenesis and epidemiology. Rapid detection and classification of new viral strains have been made possible by the efficient and accurate analysis of enormous volumes of viral genomic data made possible by AI algorithms. High-throughput examination of viral genetic material has been made possible by omics technologies, such as genomics, transcriptomics, and proteomics. This has contributed in the discovery of new therapy targets and the development of new antiviral medicines. With the advancement of new technologies like CRISPR-Cas9 gene editing and machine learning algorithms for viral outbreak prediction, automation in virology has a huge amount of potential in the future. The combination of these technologies has the potential to hasten the creation of virus-specific treatments and vaccinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 119.00
Price excludes VAT (USA)
Hardcover Book
USD 159.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cassedy A, Parle-McDermott A, O’Kennedy R. Virus detection: a review of the current and emerging molecular and immunological methods. Front Mol Biosci. 2021;8:637559. https://doi.org/10.3389/fmolb.2021.637559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Figueiredo A, Simas C, Karafillakis E, Paterson P, Larson HJ. Mapping global trends in vaccine confidence and investigating barriers to vaccine uptake: a large-scale retrospective temporal modelling study. Lancet. 2020;396(10255):898–908. https://doi.org/10.1016/S0140-6736(20)31558-0.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Burrell CJ, Howard CR, Murphy FA. History and impact of virology. In: Fenner and White’s medical virology. Elsevier; 2017. p. 3–14. https://doi.org/10.1016/B978-0-12-375156-0.00001-1.

    Chapter  Google Scholar 

  4. Malik N, Arfin T, Khan AU. Graphene nanomaterials: chemistry and pharmaceutical perspectives. In: Nanomaterials for drug delivery and therapy. Elsevier; 2019. p. 373–402. https://doi.org/10.1016/B978-0-12-816505-8.00002-3.

    Chapter  Google Scholar 

  5. Lee HR, Liao L, Xiao W, Vailionis A, Ricco AJ, White R, Nishi Y, Chiu W, Chu S, Cui Y. Three-dimensional analysis of particle distribution on filter layers inside N95 respirators by deep learning. Nano Lett. 2021;21(1):651–7. https://doi.org/10.1021/acs.nanolett.0c04230.

    Article  CAS  PubMed  Google Scholar 

  6. Dimastromatteo J, Charles EJ, Laubach VE. Molecular imaging of pulmonary diseases. Respir Res. 2018;19(1):17. https://doi.org/10.1186/s12931-018-0716-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nicol T, Lefeuvre C, Serri O, Pivert A, Joubaud F, Dubée V, Kouatchet A, Ducancelle A, Lunel-Fabiani F, Le Guillou-Guillemette H. Assessment of SARS-CoV-2 serological tests for the diagnosis of COVID-19 through the evaluation of three immunoassays: two automated immunoassays (Euroimmun and Abbott) and one rapid lateral flow immunoassay (NG biotech). J Clin Virol. 2020;129:104511. https://doi.org/10.1016/j.jcv.2020.104511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T, Brünink S, Schneider J, Schmidt ML, Mulders DG, Haagmans BL, van der Veer B, van den Brink S, Wijsman L, Goderski G, Romette J-L, Ellis J, Zambon M, Drosten C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eur Secur. 2020;25(3):2000045. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045.

    Article  Google Scholar 

  9. He Y, Hu C, Li Z, Wu C, Zeng Y, Peng C. Multifunctional carbon nanomaterials for diagnostic applications in infectious diseases and tumors. Materials Today Bio. 2022;14:100231. https://doi.org/10.1016/j.mtbio.2022.100231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dietzel S, Ferrando-May E, Fried H, Kukat C, Naumann A, Nitschke R, Pasierbek P, Peychl J, Rasse TM, Schroth-Diez B, Stöckl MT, Terjung S, Thuenauer R, Tulok S, Weidtkamp-Peters S. A joint action in times of pandemic: the German BioImaging recommendations for operating imaging core facilities during the SARS-Cov−2 emergency. Cytometry A. 2020;97(9):882–6. https://doi.org/10.1002/cyto.a.24178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sivaraman D, Biswas P, Cella LN, Yates MV, Chen W. Detecting RNA viruses in living mammalian cells by fluorescence microscopy. Trends Biotechnol. 2011;29(7):307–13. https://doi.org/10.1016/j.tibtech.2011.02.006.

    Article  CAS  PubMed  Google Scholar 

  12. Kumar Das J, Tradigo G, Veltri P, Guzzi H, Roy S. Data science in unveiling COVID-19 pathogenesis and diagnosis: evolutionary origin to drug repurposing. Brief Bioinform. 2021;22(2):855–72. https://doi.org/10.1093/bib/bbaa420.

    Article  CAS  PubMed  Google Scholar 

  13. Zargari Khuzani A, Heidari M, Shariati SA. COVID-classifier: an automated machine learning model to assist in the diagnosis of COVID-19 infection in chest X-ray images. Sci Rep. 2021;11(1):9887. https://doi.org/10.1038/s41598-021-88807-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uchil PD, Haugh KA, Pi R, Mothes W. In vivo imaging-driven approaches to study virus dissemination and pathogenesis. Annu Rev Virol. 2019;6(1):501–24. https://doi.org/10.1146/annurev-virology-101416-041429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Daly JM. Zoonosis, emerging and re-emerging viral diseases. In: Encyclopedia of virology. Elsevier; 2021. p. 569–76. https://doi.org/10.1016/B978-0-12-814515-9.00049-7.

    Chapter  Google Scholar 

  16. Hwang K-A, Ahn JH, Nam J-H. Diagnosis of viral infection using real-time polymerase chain reaction. J Bacteriol Virol. 2018;48(1):1. https://doi.org/10.4167/jbv.2018.48.1.1.

    Article  CAS  Google Scholar 

  17. Al-Hajjar S. Laboratory diagnosis of viral disease. In: Textbook of clinical pediatrics. Berlin Heidelberg: Springer; 2012. p. 923–8. https://doi.org/10.1007/978-3-642-02202-9_75.

    Chapter  Google Scholar 

  18. Storch GA. Diagnostic virology. Clin Infect Dis. 2000;31(3):739–51. https://doi.org/10.1086/314015.

    Article  CAS  PubMed  Google Scholar 

  19. Ecker C, Ertl A, Pulverer W, Nemes A, Szekely P, Petrasch A, Linsberger-Martin G, Cichna-Markl M. Validation and comparison of a sandwich ELISA, two competitive ELISAs and a real-time PCR method for the detection of lupine in food. Food Chem. 2013;141(1):407–18. https://doi.org/10.1016/j.foodchem.2013.02.091.

    Article  CAS  PubMed  Google Scholar 

  20. Gorman KT, Roby LC, Giuffre A, Huang R, Kay BK. Tandem phage-display for the identification of non-overlapping binding pairs of recombinant affinity reagents. Nucleic Acids Res. 2017;45(18):e158. https://doi.org/10.1093/nar/gkx688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bahadır EB, Sezgintürk MK. Lateral flow assays: principles, designs and labels. TrAC Trends Anal Chem. 2016;82:286–306. https://doi.org/10.1016/j.trac.2016.06.006.

    Article  CAS  Google Scholar 

  22. Sastre P, Gallardo C, Monedero A, Ruiz T, Arias M, Sanz A, Rueda P. Development of a novel lateral flow assay for detection of African swine fever in blood. BMC Vet Res. 2016;12(1):206. https://doi.org/10.1186/s12917-016-0831-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Si J, Li J, Zhang L, Zhang W, Yao J, Li T, Wang W, Zhu W, Allain J, Fu Y, Li C. A signal amplification system on a lateral flow immunoassay detecting for hepatitis e-antigen in human blood samples. J Med Virol. 2019;91(7):1301–6. https://doi.org/10.1002/jmv.25452.

    Article  CAS  PubMed  Google Scholar 

  24. Behzadi P, Ranjbar R, Alavian SM. Nucleic acid-based approaches for detection of viral hepatitis. Jundishapur J Microbiol. 2014;8(1):e17449. https://doi.org/10.5812/jjm.17449.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Metcalf TG, Melnick JL, Estes MK. ENVIRONMENTAL VIROLOGY: from detection of virus in sewage and water by isolation to identification by molecular biology—a trip of over 50 years. Annu Rev Microbiol. 1995;49(1):461–87. https://doi.org/10.1146/annurev.mi.49.100195.002333.

    Article  CAS  PubMed  Google Scholar 

  26. Navarro E, Serrano-Heras G, Castaño MJ, Solera J. Real-time PCR detection chemistry. Clin Chim Acta. 2015;439:231–50. https://doi.org/10.1016/j.cca.2014.10.017.

    Article  CAS  PubMed  Google Scholar 

  27. Notomi T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):63e–63. https://doi.org/10.1093/nar/28.12.e63.

    Article  Google Scholar 

  28. Kaneko H, Kawana T, Fukushima E, Suzutani T. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J Biochem Biophys Methods. 2007;70(3):499–501. https://doi.org/10.1016/j.jbbm.2006.08.008.

    Article  CAS  PubMed  Google Scholar 

  29. Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol. 2006;4(7):e204. https://doi.org/10.1371/journal.pbio.0040204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li J, Macdonald J. Advances in isothermal amplification: novel strategies inspired by biological processes. Biosens Bioelectron. 2015;64:196–211. https://doi.org/10.1016/j.bios.2014.08.069.

    Article  CAS  PubMed  Google Scholar 

  31. Yin L, Man S, Ye S, Liu G, Ma L. CRISPR-Cas based virus detection: recent advances and perspectives. Biosens Bioelectron. 2021;193:113541. https://doi.org/10.1016/j.bios.2021.113541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li S-Y, Cheng Q-X, Wang J-M, Li X-Y, Zhang Z-L, Gao S, Cao R-B, Zhao G-P, Wang J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018;4(1):20. https://doi.org/10.1038/s41421-018-0028-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van Wesenbeeck L, Meeuws H, Van Immerseel A, Ispas G, Schmidt K, Houspie L, Van Ranst M, Stuyver L. Comparison of the FilmArray RP, Verigene RV+, and Prodesse ProFLU+/FAST+ multiplex platforms for detection of influenza viruses in clinical samples from the 2011-2012 influenza season in Belgium. J Clin Microbiol. 2013;51(9):2977–85. https://doi.org/10.1128/JCM.00911-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Equbal A, Masood S, Equbal I, Ahmad S, Khan NZ, Khan ZA. Artificial intelligence against COVID-19 pandemic: a comprehensive insight. Curr Med Imaging Rev. 2023;19(1):1–18. https://doi.org/10.2174/1573405617666211004115208.

    Article  Google Scholar 

  35. Ceccon DM, Amaral PHR, Andrade LM, da Silva MIN, Andrade LAF, Moraes TFS, Bagno FF, Rocha RP, de Almeida Marques DP, Ferreira GM, Lourenço AA, Ribeiro ÁL, Coelho-dos-Reis JGA, da Fonseca FG, Gonzalez JC. New, fast, and precise method of COVID-19 detection in nasopharyngeal and tracheal aspirate samples combining optical spectroscopy and machine learning. Braz J Microbiol. 2023;54:769–77. https://doi.org/10.1007/s42770-023-00923-5.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Alsalameh S, Alnajjar K, Makhzoum T, Al Eman N, Shakir I, Mir TA, Alkattan K, Chinnappan R, Yaqinuddin A. Advances in biosensing technologies for diagnosis of COVID-19. Biosensors. 2022;12(10):898. https://doi.org/10.3390/bios12100898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen Y-T, Lee Y-C, Lai Y-H, Lim J-C, Huang N-T, Lin C-T, Huang J-J. Review of integrated optical biosensors for point-of-care applications. Biosensors. 2020;10(12):209. https://doi.org/10.3390/bios10120209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim S, Lee J-H. Current advances in paper-based biosensor technologies for rapid COVID-19 diagnosis. Biochip J. 2022;16(4):376–96. https://doi.org/10.1007/s13206-022-00078-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li K, Nguyen HG, Lu X, Wang Q. Viruses and their potential in bioimaging and biosensing applications. Analyst. 2010;135(1):21–7. https://doi.org/10.1039/B911883G.

    Article  CAS  PubMed  Google Scholar 

  40. Maddali H, Miles CE, Kohn J, O’Carroll DM. Optical biosensors for virus detection: prospects for SARS-CoV-2/COVID-19. Chembiochem. 2021;22(7):1176–89. https://doi.org/10.1002/cbic.202000744.

    Article  CAS  PubMed  Google Scholar 

  41. Chavda VP, Valu DD, Parikh PK, Tiwari N, Chhipa AS, Shukla S, Patel SS, Balar PC, Paiva-Santos AC, Patravale V. Conventional and novel diagnostic tools for the diagnosis of emerging SARS-CoV-2 variants. Vaccine. 2023;11(2):374. https://doi.org/10.3390/vaccines11020374.

    Article  CAS  Google Scholar 

  42. Li X, Zeng W, Li X, Chen H, Shi L, Li X, Xiang H, Cao Y, Chen H, Liu C, Wang J. CT imaging changes of corona virus disease 2019(COVID-19): a multi-center study in Southwest China. J Transl Med. 2020;18(1):154. https://doi.org/10.1186/s12967-020-02324-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Waller JV, Kaur P, Tucker A, Lin KK, Diaz MJ, Henry TS, Hope M. Diagnostic tools for coronavirus disease (COVID-19): comparing CT and RT-PCR viral nucleic acid testing. Am J Roentgenol. 2020;215(4):834–8. https://doi.org/10.2214/AJR.20.23418.

    Article  Google Scholar 

  44. Zhang X, Han L, Sobeih T, Han L, Dempsey N, Lechareas S, Tridente A, Chen H, White S, Zhang D. CXR-net: a multitask deep learning network for explainable and accurate diagnosis of COVID-19 pneumonia from chest X-ray images. IEEE J Biomed Health Inform. 2023;27(2):980–91. https://doi.org/10.1109/JBHI.2022.3220813.

    Article  PubMed  Google Scholar 

  45. Hoyos W, Aguilar J, Toro M. A clinical decision-support system for dengue based on fuzzy cognitive maps. Health Care Manag Sci. 2022;25(4):666–81. https://doi.org/10.1007/s10729-022-09611-6.

    Article  PubMed  Google Scholar 

  46. Ishii S, Takamatsu M, Ninomiya H, Inamura K, Horai T, Iyoda A, Honma N, Hoshi R, Sugiyama Y, Yanagitani N, Mun M, Abe H, Mikami T, Takeuchi K. Machine learning-based gene alteration prediction model for primary lung cancer using cytologic images. Cancer Cytopathol. 2022;130(10):812–23. https://doi.org/10.1002/cncy.22609.

    Article  CAS  PubMed  Google Scholar 

  47. Kim K, Lee M, Shin HK, Lee H, Kim B, Kang S. Development and application of survey-based artificial intelligence for clinical decision support in managing infectious diseases: a pilot study on a hospital in Central Vietnam. Front Public Health. 2022;10:1023098. https://doi.org/10.3389/fpubh.2022.1023098.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li H, Sun X, Li Z, Zhao R, Li M, Hu T. Machine learning-based integration develops biomarkers initial the crosstalk between inflammation and immune in acute myocardial infarction patients. Front Cardiovasc Med. 2023;9:1059543. https://doi.org/10.3389/fcvm.2022.1059543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Majeed NA, Hitawala AA, Heller T, Koh C. Diagnosis of HDV: from virology to non-invasive markers of fibrosis. Liver Int. 2023;43:31–46. https://doi.org/10.1111/liv.15515.

    Article  PubMed  Google Scholar 

  50. Saleh AI, Rabie AH. Human monkeypox diagnose (HMD) strategy based on data mining and artificial intelligence techniques. Comput Biol Med. 2023;152:106383. https://doi.org/10.1016/j.compbiomed.2022.106383.

    Article  PubMed  Google Scholar 

  51. Sharma P, Suleman S, Farooqui A, Ali W, Narang J, Malode SJ, Shetti NP. Analytical methods for Ebola virus detection. Microchem J. 2022;178:107333. https://doi.org/10.1016/j.microc.2022.107333.

    Article  CAS  Google Scholar 

  52. Baker S, Kessler E, Darville-Bowleg L, Merchant M. Different mechanisms of serum complement activation in the plasma of common (Chelydra serpentina) and alligator (Macrochelys temminckii) snapping turtles. PLoS One. 2019;14(6):e0217626. https://doi.org/10.1371/journal.pone.0217626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bernardino JI, Arribas JR. Antiviral therapy. Infect Dis. 2017;2:918–926.e1. https://doi.org/10.1016/B978-0-7020-6285-8.00103-9.

    Article  Google Scholar 

  54. Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019;10:594. https://doi.org/10.3389/fimmu.2019.00594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maruggi G, Zhang C, Li J, Ulmer JB, Yu D. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol Ther. 2019;27(4):757–72. https://doi.org/10.1016/j.ymthe.2019.01.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jackson NAC, Kester KE, Casimiro D, Gurunathan S, DeRosa F. The promise of mRNA vaccines: a biotech and industrial perspective. NPJ Vaccines. 2020;5(1):11. https://doi.org/10.1038/s41541-020-0159-8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. de Mello Malta F, Amgarten D, Val FC, Cervato MC, de Azevedo BMC, de Souza Basqueira M, dos Santos Alves CO, Nobrega MS, de Souza Reis R, Sebe P, Gretschischkin MC, de Oliveira DDC, Nakamura CNI, Chazanas PLN, Pinho JRR. Mass molecular testing for COVID19 using NGS-based technology and a highly scalable workflow. Sci Rep. 2021;11(1):7122. https://doi.org/10.1038/s41598-021-86498-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, S., Khan, M.A., Bala, J. (2024). Automation Techniques in Clinical Virology. In: Kumar, S., Kumar, A. (eds) Automated Diagnostic Techniques in Medical Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-99-9943-9_7

Download citation

Publish with us

Policies and ethics