Skip to main content

Automation Technique in Medical Mycology

  • Chapter
  • First Online:
Automated Diagnostic Techniques in Medical Microbiology
  • 40 Accesses

Abstract

The automated system presently are in their budding phase in diagnosis of fungal disease as most of them providing identification of yeast along with their antifungal sensitivity pattern. Very few equipments have been approved for identification of filamentous fungi. Further, due to high cost, their availability are still limited in high end diagnostic laboratory especially in developing countries. Nevertheless, their features of automated, faster, precise, sensitive and more accurate identification with minimum cross reactivity as well as antimicrobial susceptibility adequately may compensate the initial higher cost of the equipment. The rapid identification and antimicrobial sensitivity report may immensely help clinician in initiating early evidence based precise treatment to reduce mortality especially in invasive fungal diseases by reducing treatment cost and hospital stay to ultimately help the patients, their family and the country with lesser disease and economic burden. These features are likely to justify their requirement in diagnostic microbiology including mycology as the integral part of the laboratory for early, precise and accurate diagnosis of fungal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 119.00
Price excludes VAT (USA)
Hardcover Book
USD 159.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker PT, et al. Identification of filamentous fungi isolates by MALDI-TOF mass spectrometry: clinical evaluation of an extended reference spectra library. Med Mycol. 2014;52(8):826–34. https://doi.org/10.1093/mmy/myu064.

    Article  CAS  PubMed  Google Scholar 

  2. Peng Y, Zhang Q, Xu C, Shi W. MALDI-TOF MS for the rapid identification and drug susceptibility testing of filamentous fungi. Exp Ther Med. 2019;18(6):4865–73. https://doi.org/10.3892/etm.2019.8118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Motteu N, Goemaere B, Bladt S, Packeu A. Implementation of MALDI-TOF mass spectrometry to identify fungi from the indoor environment as an added value to the classical morphology-based identification tool. Front Allergy. 2022;3:826148. https://doi.org/10.3389/falgy.2022.826148.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wadlin JK, Hanko G, Stewart R, Pape J, Nachamkin I. Comparison of three commercial systems for identification of yeasts commonly isolated in the clinical microbiology laboratory. J Clin Microbiol. 1999;37(6):1967–70. https://doi.org/10.1128/JCM.37.6.1967-1970.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lacroix C, et al. Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for the identification of Candida species. Clin Microbiol Infect. 2014;20(2):153–8. https://doi.org/10.1111/1469-0691.12210.

    Article  CAS  PubMed  Google Scholar 

  6. Hussain KK, et al. Biosensors and diagnostics for fungal detection. J Fungi (Basel, Switzerland). 2020;6(4):349. https://doi.org/10.3390/jof6040349.

    Article  CAS  Google Scholar 

  7. Lau AF, et al. Multicenter study demonstrates standardization requirements for Mold identification by MALDI-TOF MS. Front Microbiol. 2019;10:2098. https://doi.org/10.3389/fmicb.2019.02098.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Reslova N, Michna V, Kasny M, Mikel P, Kralik P. xMAP technology: applications in detection of pathogens. Front Microbiol. 2017;8:55. https://doi.org/10.3389/fmicb.2017.00055.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hata DJ, Hall L, Fothergill AW, Larone DH, Wengenack NL. Multicenter evaluation of the new VITEK 2 advanced colorimetric yeast identification card. J Clin Microbiol. 2007;45(4):1087–92. https://doi.org/10.1128/JCM.01754-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pfaller MA, Diekema DJ, Procop GW, Rinaldi MG. Multicenter comparison of the VITEK 2 antifungal susceptibility test with the CLSI broth microdilution reference method for testing amphotericin B, flucytosine, and voriconazole against Candida spp. J Clin Microbiol. 2007;45(11):3522–8. https://doi.org/10.1128/JCM.00403-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. CDC. “Identification of Candida auris.” https://www.cdc.gov/fungal/Candida-auris/identification.html. 2020. https://www.cdc.gov/fungal/Candida-auris/identification.html. Accessed 28 Nov 2022.

  12. Hamal P, Vavrova A, Mrazek J, Svobodova L. Identification of filamentous fungi including dermatophytes using MALDI-TOF mass spectrometry. Folia Microbiol (Praha). 2022;67(1):55–61. https://doi.org/10.1007/s12223-021-00917-6.

    Article  CAS  PubMed  Google Scholar 

  13. Florio W, Tavanti A, Ghelardi E, Lupetti A. MALDI-TOF MS applications to the detection of antifungal resistance: state of the art and future perspectives. Front Microbiol. 2018;9:2577. https://doi.org/10.3389/fmicb.2018.02577.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vatanshenassan M, et al. Proof of concept for MBT ASTRA, a rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based method to detect Caspofungin resistance in Candida albicans and Candida glabrata. J Clin Microbiol. 2018;56(9):1. https://doi.org/10.1128/JCM.00420-18.

    Article  Google Scholar 

  15. Zacharioudakis IM, Zervou FN, Mylonakis E. T2 magnetic resonance assay: overview of available data and clinical implications. J Fungi (Basel, Switzerland). 2018;4(2):45. https://doi.org/10.3390/jof4020045.

    Article  CAS  Google Scholar 

  16. Neely LA, et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med. 2013;5(182):182ra54. https://doi.org/10.1126/scitranslmed.3005377.

    Article  CAS  PubMed  Google Scholar 

  17. Morrell M, Fraser VJ, Kollef MH. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother. 2005;49(9):3640–5. https://doi.org/10.1128/AAC.49.9.3640-3645.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sexton DJ, Bentz ML, Welsh RM, Litvintseva AP. Evaluation of a new T2 magnetic resonance assay for rapid detection of emergent fungal pathogen Candida auris on clinical skin swab samples. Mycoses. 2018;61(10):786–90. https://doi.org/10.1111/myc.12817.

    Article  CAS  PubMed  Google Scholar 

  19. Leach L, Russell A, Zhu Y, Chaturvedi S, Chaturvedi V. A rapid and automated sample-to-result Candida auris real-time PCR assay for high-throughput testing of surveillance samples with the BD max open system. J Clin Microbiol. 2019;57(10):10. https://doi.org/10.1128/JCM.00630-19.

    Article  Google Scholar 

  20. Lima A, Widen R, Vestal G, Uy D, Silbert S. A TaqMan probe-based real-time PCR assay for the rapid identification of the emerging multidrug-resistant pathogen Candida auris on the BD max system. J Clin Microbiol. 2019;57(7):10–128. https://doi.org/10.1128/JCM.01604-18.

    Article  Google Scholar 

  21. Chien J-Y, et al. Evaluation of the automated Becton Dickinson MAX real-time PCR platform for detection of pneumocystis jirovecii. Future Microbiol. 2017;12:29–37. https://doi.org/10.2217/fmb-2016-0115.

    Article  CAS  PubMed  Google Scholar 

  22. Marucco AP, Minervini P, Snitman GV, Sorge A, Guelfand LI, Moral LL. Comparison of the identification results of Candida species obtained by BD Phoenix™ and Maldi-TOF (Bruker microflex LT Biotyper 3.1). Rev Argent Microbiol. 2018;50(4):337–40. https://doi.org/10.1016/j.ram.2017.10.003.

    Article  PubMed  Google Scholar 

  23. Posteraro B, et al. Comparative evaluation of BD Phoenix and vitek 2 systems for species identification of common and uncommon pathogenic yeasts. J Clin Microbiol. 2013;51(11):3841–5. https://doi.org/10.1128/JCM.01581-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ceballos-Garzón A, et al. Comparison between MALDI-TOF MS and MicroScan in the identification of emerging and multidrug resistant yeasts in a fourth-level hospital in Bogotá, Colombia. BMC Microbiol. 2019;19(1):106. https://doi.org/10.1186/s12866-019-1482-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Singh Negi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Negi, S.S. (2024). Automation Technique in Medical Mycology. In: Kumar, S., Kumar, A. (eds) Automated Diagnostic Techniques in Medical Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-99-9943-9_6

Download citation

Publish with us

Policies and ethics