Skip to main content

Automation Techniques in Mycobacteriology

  • Chapter
  • First Online:
Automated Diagnostic Techniques in Medical Microbiology

Abstract

In this era of globalisation and pandemics, automation in clinical laboratories is in huge demand as it enhances the workflow process. Laboratory automation is one field which does not remain untouched and when it comes to automation in diagnosis of chronic diseases like tuberculosis it augments the long list of tests which are in current use. Mycobacterium spp. specially Mtb is one slow growing bacterium which requires a long waiting time till the diagnosis can be made and this could result in high mortality as is evident from large number of people who die due to tuberculosis. The automation in mycobacteriology tends to fasten this process and help in reduction of a large economic burden on developing countries where these diseases are endemic. Various automated methods have been introduced, when it comes to detecting Mycobacterium spp., covering spectrum from microscopy to molecular methods. This chapter addresses the need for automation in detecting Mycobacterium spp. along with various technologies which have brought a revolution in field of diagnosis and cure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 119.00
Price excludes VAT (USA)
Hardcover Book
USD 159.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Tuberculosis Day 2022-PAHO/WHO|Pan American Health Organization. [cited 2022 Oct 5]. https://www.paho.org/en/campaigns/world-tuberculosis-day-2022.

  2. Fitzgerald WD, Sterling TR, Haas DW. Mycobacterium tuberculosis. In: Mandell, Doughlas, and Bennetts principles and practices of infectious diseases. 7th ed. Philadelphia PA: Churchill Livingstone/Elsevier; 2010. p. 3129.

    Chapter  Google Scholar 

  3. Global tuberculosis report 2021. [cited 2022 Dec 13]. https://www.who.int/publications-detail-redirect/9789240037021.

  4. Bagre A, Lariya NK, Kori ML. Diagnosis of tuberculosis: a core curriculum review. IJRAR. 2018;6(1):2348.

    Google Scholar 

  5. Terán Soto RI, Waard JH De. Recent advances in the laboratory diagnosis of tuberculosis. 2015. [cited 2022 Dec 13]. http://www.dspace.uce.edu.ec/handle/25000/14534

  6. Zijenah LS. The World Health Organization recommended TB diagnostic tools. In: Tuberculosis. London: IntechOpen; 2018. https://www.intechopen.com/state.item.id.

    Google Scholar 

  7. Cattamanchi A, Davis JL, Worodria W, den Boon S, Yoo S, Matovu J, et al. Sensitivity and specificity of fluorescence microscopy for diagnosing pulmonary tuberculosis in a high HIV prevalence setting. Int J Tuberc Lung Dis. 2009;13(9):1130–6.

    CAS  PubMed  Google Scholar 

  8. Steingart KR, Henry M, Ng V, Hopewell PC, Ramsay A, Cunningham J, et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis. 2006;6(9):570–81.

    Article  PubMed  Google Scholar 

  9. Tapley A, Switz N, Reber C, Davis JL, Miller C, Matovu JB, et al. Mobile digital fluorescence microscopy for diagnosis of tuberculosis. J Clin Microbiol. 2013;51(6):1774–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tan Y, Su B, Cai X, Guan P, Liu X, Ma P, et al. An automated smear microscopy system to diagnose tuberculosis in a high-burden setting. Clin Microbiol Infect. 2019;25(12):1553–9.

    Article  CAS  PubMed  Google Scholar 

  11. Zingue D, Weber P, Soltani F, Raoult D, Drancourt M. Automatic microscopic detection of mycobacteria in sputum: a proof-of-concept. Sci Rep. 2018;8(1):11308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Palomino JC. Nonconventional and new methods in the diagnosis of tuberculosis: feasibility and applicability in the field. Eur Respir J. 2005;26(2):339–50.

    Article  CAS  PubMed  Google Scholar 

  13. Asmar S, Drancourt M. Rapid culture-based diagnosis of pulmonary tuberculosis in developed and developing countries. Front Microbiol. 2015;6:1184. https://doi.org/10.3389/fmicb.2015.01184.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Samper S, González-Martin J. Microbiological diagnosis of infections caused by the genus Mycobacterium. Enferm infec Microbiol Clin (English ed). 2018;36(2):104–11.

    Article  Google Scholar 

  15. Sorlozano A, Soria I, Roman J, Huertas P, Soto MJ, Piedrola G, et al. Comparative evaluation of three culture methods for the isolation of mycobacteria from clinical samples. J Microbiol Biotechnol. 2009;19(10):1259–64.

    PubMed  Google Scholar 

  16. Zhao P, Yu Q, Chen L, Zhang M. Evaluation of a liquid culture system in the detection of mycobacteria at an antituberculosis institution in China; a retrospective study. J Int Med Res. 2016;44(5):1055–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva: World health Organization; 2018. https://apps.who.int/iris/handle/10665/275469.

    Google Scholar 

  18. Fowler PW, Gibertoni Cruz AL, Hoosdally SJ, Jarrett L, Borroni E, Chiacchiaretta M, et al. Automated detection of bacterial growth on 96-well plates for high-throughput drug susceptibility testing of Mycobacterium tuberculosis. Microbiology (Reading). 2018;164(12):1522–30.

    Article  CAS  PubMed  Google Scholar 

  19. Acharya B, Acharya A, Gautam S, Ghimire SP, Mishra G, Parajuli N, et al. Advances in diagnosis of tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis. Mol Biol Rep. 2020;47(5):4065–75.

    Article  CAS  PubMed  Google Scholar 

  20. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis - rapid diagnostics for tuberculosis detection, 2021 update. Geneva: World Health Organization; 2021.

    Google Scholar 

  21. García-Basteiro AL, DiNardo A, Saavedra B, Silva DR, Palmero D, Gegia M, et al. Point of care diagnostics for tuberculosis. Pulmonology. 2018;24(2):73–85.

    Article  PubMed  Google Scholar 

  22. MacLean E, Kohli M, Weber SF, Suresh A, Schumacher SG, Denkinger CM, et al. Advances in molecular diagnosis of tuberculosis. J Clin Microbiol. 2020;58(10):e01582–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pillay S, Steingart KR, Davies GR, Chaplin M, Vos MD, Schumacher SG, et al. Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. Cochrane Database Syst Rev. 2022;5(5):CD014841. https://doi.org/10.1002/14651858.CD014841.pub2/full.

    Article  PubMed  Google Scholar 

  24. MacGregor-Fairlie M, Wilkinson S, Besra GS, Goldberg OP. Tuberculosis diagnostics: overcoming ancient challenges with modern solutions. Emerg Top Life Sci. 2020;4(4):435–48.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mittal, V., Pandey, P., Pandey, N. (2024). Automation Techniques in Mycobacteriology. In: Kumar, S., Kumar, A. (eds) Automated Diagnostic Techniques in Medical Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-99-9943-9_5

Download citation

Publish with us

Policies and ethics