Skip to main content

Automation Techniques in Anaerobic Bacteriology

  • Chapter
  • First Online:
Automated Diagnostic Techniques in Medical Microbiology

Abstract

Whenever an anatomical barrier gets disrupted or damaged, the anaerobic normal flora enters a previously sterile site and poses the risk of susceptible infection. This typically occurs following mucosa or skin injury from tumour, surgery, trauma and necrosis, all of which result in a decreased local tissue redox potential. Despite the diagnostic laboratories are working on bacteriology, many laboratories are yet to be standardized for anaerobic organisms. The advantage of novel technological advancements in the form of total laboratory automation can provide high-throughput, consistent data about anaerobic infection. However, for many reasons, very few manufacturers have fully addressed the issue of TLA in anaerobes. The aim of this chapter is to present the objective behind importance of automation in detection of anaerobes and limitations currently we are facing it to standardize it on a larger scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 119.00
Price excludes VAT (USA)
Hardcover Book
USD 159.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Archetti C, Montaneli A, Finazzi D, Caimi L, Garaffa E. Clinical laboratory automation: a case study. J Public Health Res. 2017;6:881.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Novak SM, Marlowe EM. Automation in the clinical microbiology laboratory. Clin Lab Med. 2013;33:567–88.

    Article  PubMed  Google Scholar 

  3. Croxatto A, Prodhom G, Faverjon F, Rochais Y, Greub G. Laboratory automation in clinical bacteriology: what system to choose? Clin Microbiol Infect. 2016;22:217–35.

    Article  CAS  PubMed  Google Scholar 

  4. Nagy E, Boyanova L, Justesen US. How to isolate, identify and determine antimicrobial susceptibility ofanaerobic bacteria in routine laboratories? Clin Microbiol Infect. 2018;24:1139–48.

    Article  CAS  PubMed  Google Scholar 

  5. Veloo AC, de Vries EC, Jean-Pierre H, Justesen US, Morris T, Urbán E, Wybo I, van Winkelhoff AJ. The optimization and validation of the Biotyper MALDI-TOF MS database for the identification of gram-positive anaerobic cocci. Clin Microbiol Infect. 2016;22:793–8.

    Article  CAS  PubMed  Google Scholar 

  6. Shannon S, Kronemann D, Patel R, Schuetz AN. Routine use of MALDI-TOF MS for anaerobic bacterial identification in clinical microbiology. Anaerobe. 2018;54:191–6.

    Article  CAS  PubMed  Google Scholar 

  7. Nagy E, Becker S, Sóki J, Urbán E, Kostrzewa M. Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroidesfragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Med Microbiol. 2011;60:1584–90.

    Article  CAS  PubMed  Google Scholar 

  8. Loesche WJ. Oxygen sensitivity of various anaerobic bacteria. Appl Microbiol. 1969;18:723–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brazier JSA. Note on ultra-violet red fluorescence of anaerobic bacteria in vitro. J Appl Microbiol. 1982;60:121–6.

    Google Scholar 

  10. Mytilinaios I, Salih M, Schofield HK, Lambert RJW. Growth curve prediction from optical density data. Int J Food Microbiol. 2012;154:169–76.

    Article  CAS  PubMed  Google Scholar 

  11. Ahn SJ, Browngardt CM, Burne RA. Changes in biochemical and phenotypic properties of streptococcus Mutans during growth with aeration. Appl Environ Microbiol. 2009;75:2517–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Candry P, Van Daele T, Denis K, Amerlinck Y, Andersen SJ, Ganigué R, Arends JBA, Nopens I, Rabaey K. A novel high-throughput method for kinetic characterisation of anaerobic bioproduction strains, Applied to Clostridium kluyveri. Sci Rep. 2018;8:9724.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stringer SC, Webb MD, George SM, Pin C, Peck MW. Heterogeneity of times required for germination and outgrowth from single spores of nonproteolytic clostridium botulinum. Appl Environ Microbiol. 2005;71:4998–5003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma L, Kim J, Hatzenpichler R, Karymov MA, Hubert N, Hanan IM, Chang EB, Ismagilov RF. Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in human microbiome Project’s Most wanted taxa. Proc Natl Acad Sci USA. 2014;111:9768–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Steinhaus B, Garcia ML, Shen AQ, Angenent LT. A portable anaerobic microbioreactor reveals optimum growth conditions for the methanogen Methanosaetaconcilii. Appl Environ Microbiol. 2007;73:1653–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Birgen C, Degnes KF, Markussen S, Wentzel A, Sletta H. Butanol production from lignocellulosic sugars by Clostridium beijerinckii in microbioreactors. Biotechnol Bioeng. 2020;14:1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sen, M., Singh, V. (2024). Automation Techniques in Anaerobic Bacteriology. In: Kumar, S., Kumar, A. (eds) Automated Diagnostic Techniques in Medical Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-99-9943-9_4

Download citation

Publish with us

Policies and ethics