Skip to main content

The Disadvantages of Automation in Clinical Microbiology

  • Chapter
  • First Online:
Automated Diagnostic Techniques in Medical Microbiology

Abstract

The procedures of clinical microbial diagnosis are complicated and expensive, the potential advantages expected from implementation of Total laboratory automation (TLA) are not just a plain shift from the manual specimen processing methodologies towards mechanisation. On the contrary, the transition towards automation should involve a critical change in the basic functioning of the laboratory and motivate users to reassess the methods in use, which leads to accuracy in identifying pathogenic microbes and the antimicrobial sensitivity tests. Designing TLA for a microbiology laboratory is a complicated procedure and exhibits some potential obstacles, mainly in the form of a higher initial expenditure, enhanced costs of supplies, space and infrastructural constraints, overcrowding of personnel, enhanced noise and heat generation, higher downtime risk, psychological dependence, and many more. In the current chapter, we give an outline of the limitations associated with over-dependence on TLA, despite the ease of working in a fully automated environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 119.00
Price excludes VAT (USA)
Hardcover Book
USD 159.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mackay IM. Real-time PCR in the microbiology laboratory. Clin Microbiol Infect. 2004;10:190–212. https://doi.org/10.1111/j.1198-743X.2004.00722.x.

    Article  CAS  PubMed  Google Scholar 

  2. Eldin C, Parola P, Raoult D. Limitations of diagnostic tests for bacterial infections. Med Mal Infect. 2019;49:98–101. https://doi.org/10.1016/j.medmal.2018.12.004.

    Article  CAS  PubMed  Google Scholar 

  3. Croxatto A, Dijkstra K, Prodhom G, Greub G. Comparison of inoculation with the InoqulA and WASP automated systems with manual inoculation. J Clin Microbiol. 2015;53:2298–307. https://doi.org/10.1128/JCM.03076-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thomson RB, McElvania E. Total laboratory automation. Clin Lab Med. 2019;39:371–89. https://doi.org/10.1016/j.cll.2019.05.002.

    Article�� PubMed  Google Scholar 

  5. Croxatto A, Prodhom G, Faverjon F, Rochais Y, Greub G. Laboratory automation in clinical bacteriology: what system to choose? Clin Microbiol Infect. 2016;22:217–35. https://doi.org/10.1016/j.cmi.2015.09.030.

    Article  CAS  PubMed  Google Scholar 

  6. Bourbeau PP, Ledeboer NA. Automation in clinical microbiology. J Clin Microbiol. 2013;51:1658–65. https://doi.org/10.1128/JCM.00301-13.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cherkaoui A, Schrenzel J. Total laboratory automation for rapid detection and identification of microorganisms and their antimicrobial resistance profiles. Front Cell Infect Microbiol. 2022;12:807668. https://doi.org/10.3389/fcimb.2022.807668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cherkaoui A, Renzi G, Fischer A, Azam N, Schorderet D, Vuilleumier N, Schrenzel J, Comparison of the Copan WASPLab Incorporating the BioRad Expert System Against the SIRscan. Automatic for routine antimicrobial disc diffusion susceptibility testing. Clin Microbiol Infect. 2000;26(2020):619–25. https://doi.org/10.1016/j.cmi.2019.11.008.

    Article  CAS  Google Scholar 

  9. Klein S, Nurjadi D, Horner S, Heeg K, Zimmermann S, Burckhardt I. Significant increase in cultivation of Gardnerella vaginalis, Alloscardovia omnicolens, Actinotignum schaalii, and Actinomyces spp. in urine samples with total laboratory automation. Eur J Clin Microbiol Infect Dis. 2018;37:1305–11. https://doi.org/10.1007/s10096-018-3250-6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lainhart W, Burnham C-AD. Enhanced recovery of fastidious organisms from urine culture in the setting of total laboratory automation. J Clin Microbiol. 2018;56:e00546–18. https://doi.org/10.1128/JCM.00546-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cherkaoui A, Renzi G, Vuilleumier N, Schrenzel J. Copan WASPLab automation significantly reduces incubation times and allows earlier culture readings. Clin Microbiol Infect. 2019;25:1430.e5–1430.e12. https://doi.org/10.1016/j.cmi.2019.04.001.

    Article  CAS  PubMed  Google Scholar 

  12. Van TT, Mata K, Dien Bard J. Automated detection of streptococcus pyogenes pharyngitis by use of Colorex strep a CHROMagar and WASPLab artificial intelligence chromogenic detection module software. J Clin Microbiol. 2019;57:e00811–9. https://doi.org/10.1128/JCM.00811-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Foschi C, Turello G, Lazzarotto T, Ambretti S. Performance of PhenoMatrix for the detection of group B streptococcus from recto-vaginal swabs. Diagn Microbiol Infect Dis. 2021;101:115427. https://doi.org/10.1016/j.diagmicrobio.2021.115427.

    Article  CAS  PubMed  Google Scholar 

  14. Cheng CWR, Ong CH, Chan DSG. Impact of BD Kiestra InoqulA streaking patterns on colony isolation and turnaround time of methicillin-resistant Staphylococcus aureus and carbapenem-resistant Enterobacterale surveillance samples. Clin Microbiol Infect. 2020;26:1201–6. https://doi.org/10.1016/j.cmi.2020.01.006.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang W, Wu S, Deng J, Liao Q, Liu Y, Xiong L, Shu L, Yuan Y, Xiao Y, Ma Y, Kang M, Li D, Xie Y. Total laboratory automation and three shifts reduce turnaround time of cerebrospinal fluid culture results in the Chinese clinical microbiology laboratory. Front Cell Infect Microbiol. 2021;11:765504. https://doi.org/10.3389/fcimb.2021.765504.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim K, Lee S-G, Kim TH, Lee SG. Economic evaluation of total laboratory automation in the clinical laboratory of a tertiary care hospital. Ann Lab Med. 2022;42:89–95. https://doi.org/10.3343/alm.2022.42.1.89.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Faron ML, Buchan BW, Coon C, Liebregts T, van Bree A, Jansz AR, Soucy G, Korver J, Ledeboer NA. Automatic digital analysis of chromogenic media for vancomycin-resistant-enterococcus screens using copan WASPLab. J Clin Microbiol. 2016;54:2464–9. https://doi.org/10.1128/JCM.01040-16.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Faron ML, Buchan BW, Vismara C, Lacchini C, Bielli A, Gesu G, Liebregts T, van Bree A, Jansz A, Soucy G, Korver J, Ledeboer NA. Automated scoring of chromogenic media for detection of methicillin-resistant Staphylococcus aureus by use of WASPLab image analysis software. J Clin Microbiol. 2016;54:620–4. https://doi.org/10.1128/JCM.02778-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Culbreath K, Piwonka H, Korver J, Noorbakhsh M. Benefits derived from full laboratory automation in microbiology: a tale of four laboratories. J Clin Microbiol. 2021;59:e01969–20. https://doi.org/10.1128/JCM.01969-20.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zimmermann S. Laboratory automation in the microbiology laboratory: an ongoing journey, not a tale? J Clin Microbiol. 2021;59:e02592–20. https://doi.org/10.1128/JCM.02592-20.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Archetti C, Montanelli A, Finazzi D, Caimi L, Garrafa E. Clinical laboratory automation: a case study. J Public Health Res. 2017;6:881. https://doi.org/10.4081/jphr.2017.881.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Young DS. Laboratory automation: smart strategies and practical applications. Clin Chem. 2000;46:740–5. https://doi.org/10.1093/clinchem/46.5.740.

    Article  CAS  PubMed  Google Scholar 

  23. Melanson SEF, Lindeman NI, Jarolim P. Selecting automation for the clinical chemistry laboratory. Arch Pathol Lab Med. 2007;131:1063–9. https://doi.org/10.5858/2007-131-1063-SAFTCC.

    Article  CAS  PubMed  Google Scholar 

  24. Genzen JR, Burnham C-AD, Felder RA, Hawker CD, Lippi G, Peck Palmer OM. Challenges and opportunities in implementing total laboratory automation. Clin Chem. 2018;64:259–64. https://doi.org/10.1373/clinchem.2017.274068.

    Article  PubMed  Google Scholar 

  25. Stanton NA, Young MS. A proposed psychological model of driving automation. Theor Issues Ergon Sci. 2000;1:315–31. https://doi.org/10.1080/14639220052399131.

    Article  Google Scholar 

  26. McBride SE, Rogers WA, Fisk AD. Understanding human management of automation errors. Theor Issues Ergon Sci. 2014;15:545–77. https://doi.org/10.1080/1463922X.2013.817625.

    Article  PubMed  Google Scholar 

  27. Wickens CD, Helton WS, Hollands JG, Banbury S. Engineering psychology and human performance. 5th ed. New York, NY: Routledge; 2021. https://doi.org/10.4324/9781003177616.

    Book  Google Scholar 

  28. Lippi G, von Meyer A, Cadamuro J, Simundic A-M. Blood sample quality. Diagnosi. 2019;6:25–31. https://doi.org/10.1515/dx-2018-0018.

    Article  Google Scholar 

  29. Adcock Funk D, Lippi G, Favaloro E. Quality standards for sample processing, transportation, and storage in hemostasis testing. Semin Thromb Hemost. 2012;38:576–85. https://doi.org/10.1055/s-0032-1319768.

    Article  CAS  PubMed  Google Scholar 

  30. Plebani M, Laposata M, Lippi G. A manifesto for the future of laboratory medicine professionals. Clin Chim Acta. 2019;489:49–52. https://doi.org/10.1016/j.cca.2018.11.021.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khanna, N., Chatterji, T., Kumar, S. (2024). The Disadvantages of Automation in Clinical Microbiology. In: Kumar, S., Kumar, A. (eds) Automated Diagnostic Techniques in Medical Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-99-9943-9_13

Download citation

Publish with us

Policies and ethics