Skip to main content

Techniques for the Diagnosis of Rare Genetic Disorders

  • Chapter
  • First Online:
Rare Genetic Disorders

Abstract

Rare genetic disorders are hereditary conditions brought on by changes or mutations in a person’s DNA. A few people are affected by these illnesses, often inherited from parents with mutant genes. Rare diseases afflict more than 300–400 million people worldwide, including 30 million in the United States, and often result in chronic illness, disability, and premature death. Using heuristic approaches to diagnose rare diseases is a common practice based on clinical experience and medical literature. Diagnosing rare diseases remains challenging, regardless of their prevalence in clinical practice. Patients with rare diseases are often left undiagnosed for years, and many do not receive a correct diagnosis before they die. But still, improvements in genetic testing and research are improving the understanding of these disorders and raising the potential for identifying effective therapies and remedies. Molecular identification of rare and undiagnosed diseases has been made possible by gene panels, microarrays, and exome sequencing in recent years. New diagnostic approaches based on next-generation sequencing (NGS) technology have made it possible to diagnose genetically heterogeneous disorders, even when clinical diagnostic hypotheses are unclear. While new technologies are used extensively in many health facilities and health systems, their use is significantly different. This chapter provides clinicians and researchers with strategies for a group of rare hereditary diseases brought on by genetic abnormalities, which only affect a minor portion of the population. The rarity of these conditions and the wide variety of symptoms they might present make things more complicated. The precision and rapidity of diagnosis have increased due to genetic testing technology developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • 1000 Genomes Project Consortium (2015) A global reference for human genetic variation. Nature 526:68–74

    Article  Google Scholar 

  • Aggarwal S, Phadke SR (2015) Medical genetics and genomic medicine in India: current status and opportunities ahead. Mol Genet Genomic Med 3:160–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Anon (2016) Practice bulletin No. 163: screening for fetal aneuploidy. Obstet Gynecol 127(5):e123–e137

    Article  Google Scholar 

  • Basu A, Sarkar-Roy N, Majumder PP (2016) Genomic reconstruction of the history of extant populations of India reveals five distinct ancestral components and a complex structure. Proc Natl Acad Sci U S A 113:1594–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J et al (2011) Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med 3:65ra4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bioethics C (2001) Ethical issues with genetic testing in pediatrics. Pediatrics 107:14511455

    Google Scholar 

  • Bishop R (2010) Applications of fluorescence in situ hybridization (FISH) in detecting genetic aberrations of medical significance. Biosci Horiz 3:8595

    Article  Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561

    Article  CAS  PubMed  Google Scholar 

  • Bonnefond A, Durand E, Sand O, De Graeve F, Gallina S, Busiah K et al (2010) Molecular diagnosis of neonatal diabetes mellitus using next-generation sequencing of the whole exome. PLoS One 5:e13630

    Article  PubMed  PubMed Central  Google Scholar 

  • Botkin JR (2016) Ethical issues in pediatric genetic testing and screening for current opinion in pediatrics. Curr Opin Pediatr 28:700704

    Article  Google Scholar 

  • Bukyya JL, Tejasvi MLA, Avinash A, Chanchala HP, Talwade P, Afroz MM, Pokala A, Neela PK, Shyamilee TK, Srisha V (2021) DNA profiling in forensic science: a review. Glob Med Genet 8(4):135–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler JM (2012) Advanced topics in forensic DNA typing: methodology. Elsevier Academic Press, San Diego, CA

    Google Scholar 

  • Butler JM (2015) Advanced topics in forensic DNA typing: interpretation. Elsevier Academic Press, San Diego, CA

    Google Scholar 

  • Carlson LM, Vora NL (2017) Prenatal diagnosis: screening and diagnostic tools. Obstetr Gynecol Clin 44(2):245–256

    Article  Google Scholar 

  • Chen EZ, Chiu RW, Sun H, Akolekar R, Chan KC, Leung TY et al (2011) Noninvasive prenatal diagnosis of fetal trisomy 18 and trisomy 13 by maternal plasma DNA sequencing. PLoS One 6:e21791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu RW, Chan KC, Gao Y, Lau VY, Zheng W, Leung TY et al (2008) Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic DNA sequencing in maternal plasma. Proc Natl Acad Sci U S A 105:20458–20463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P et al (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106:19096–19101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Classen D, Pestotnik S, Evans R, Lloyd J, Burke J (1997) Adverse drug events in hospitalized patients. excess length of stay, extra costs, and attributable mortality. JAMA 277:301–306

    Article  CAS  PubMed  Google Scholar 

  • Clayton TM, Whitaker JP, Maguire CN (1995) Identification of bodies from the scene of a mass disaster using DNA amplification of short tandem repeat (STR) loci. Forensic Sci Int 76:7–15

    Article  CAS  PubMed  Google Scholar 

  • CLSI (2013) Blood collection on filter paper for newborn screening programs; approved standard, CLSI Document NBS01-A6, vol 29, No. 25, 6th edn. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  • Cortelli SC, Jorge AOC, Querido SMR, Cortelli JR (2003) PCR e cultura na detecção subgengival de Actinobacillus actinomycetemcomitans: estudo comparativo. Cien Odontol Bras 6(2):58–64

    Google Scholar 

  • Cremer T, Landegent J, Brückner A, Scholl HP, Schardin M, Hager HD et al (1986) Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84. Hum Genet 74:346–352

    Article  CAS  PubMed  Google Scholar 

  • Cui C, Shu W, Li P (2016) Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. Front Cell Dev Biol 4:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Cullinane AR, Vilboux T, O’Brien K, Curry JA, Maynard DM, Carlson-Donohoe H et al (2011) Homozygosity mapping and whole-exome sequencing to detect SLC45A2 and G6PC3 mutations in a single patient with oculocutaneous albinism and neutropenia. J Invest Dermatol 131:2017–2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danese E, Lippi G (2018) Rare diseases: the paradox of an emerging challenge. Ann Transl Med 6:329

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Resta C, Galbiati S, Carrera P, Ferrari M (2018) Next-generation sequencing approach for the diagnosis of human diseases: open challenges and new opportunities. EJIFCC 29:414

    Google Scholar 

  • du Manoir S, Speicher MR, Joos S, Schrock E, Popp S et al (1993) Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet 90:590–610

    Article  PubMed  Google Scholar 

  • Evans JP, Skrzynia C, Burke W (2001) The complexities of predictive genetic testing. BMJ 322(7293):1052–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh D, Venkataramani P, Nandi S, Bhattacharjee S (2019) CRISPR-Cas9 a boon or bane: the bumpy road ahead to cancer therapeutics. Cancer Cell Int 19:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill P, Jeffreys AJ, Werrett DJ (1985) Forensic application of DNA ‘fingerprints’. Nature 318:577–579

    Article  CAS  PubMed  Google Scholar 

  • Gurian EA, Kinnamon DD, Henry JJ, Waisbren SE (2006) Expanded newborn screening for biochemical disorders: the effect of a false-positive result. Pediatrics 117:1915–1921

    Article  PubMed  Google Scholar 

  • Hewlett J, Waisbren SE (2006) A review of the psychosocial effects of false-positive results on parents and current communication practices in newborn screening. J Inherit Metab Dis 29:677–682

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A et al (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331:1199–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821

    Article  CAS  PubMed  Google Scholar 

  • Kao WH, Klag MJ, Meoni LA et al (2008) MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet 40(10):1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Karczewski KJ et al (2019) Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv. https://doi.org/10.1101/531210

  • Kasthuri A (2018) Challenges to healthcare in India—the five A’s. Indian J Community Med 43:141–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Katsanis SH, Katsanis N (2013) Molecular genetic testing and the future of clinical genomics. Nat Rev Genet 14:415426

    Article  Google Scholar 

  • Kiezun A et al (2012) Exome sequencing and the genetic basis of complex traits. Nature Genet 44:623–630

    Article  CAS  PubMed  Google Scholar 

  • Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjoback R, Sjogreen B, Strombom L, Stahlberg A, Zoric N (2006) The real-time polymerase chain reaction. Mol Asp Med 27(2–3):95–115

    Article  CAS  Google Scholar 

  • Kuchay RAH, Mir YR, Zeng X, Hassan A, Musarrat J, Parwez I et al (2019) ARSACS as a worldwide disease: novel SACS mutations identified in a consanguineous family from the remote tribal Jammu and Kashmir Region in India. Cerebellum 18:807–812

    Article  CAS  PubMed  Google Scholar 

  • Lai L-T, Meng Z, Shao F, Zhang L-F (2016) Simultaneous RNA-DNA FISH. Methods Mol Biol 1402:135–145

    Article  CAS  PubMed  Google Scholar 

  • Lazarou J, Pomeranz B, Corey P (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279:1200–1205

    Article  CAS  PubMed  Google Scholar 

  • Lek M et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X (2020) Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 5(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Liou S, Stringer F, Hirayama M (2012) The impact of pharmacogenomics research on drug development. Drug Metab Pharmacokinet 27:2–8

    Article  CAS  PubMed  Google Scholar 

  • Majewski J, Wang Z, Lopez I, Al Humaid S, Ren H, Racine J et al (2011) A new ocular phenotype associated with an unexpected but known systemic disorder and mutation: novel use of genomic diagnostics and exome sequencing. J Med Genet 48:593–596

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS et al (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13:722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning M, Hudgins L, Professional P, Guidelines C (2010) Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med 12:742–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPherson E (2006) Genetic diagnosis and testing in clinical practice. Clin Med Res 4:123129

    Article  Google Scholar 

  • Milanich NB (2019) Paternity: the elusive quest for the father. Harvard University Press

    Book  Google Scholar 

  • Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP et al (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86:749–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morillo JM, Lau L, Sanz M, Herrera D, Silva A (2003) Quantitative real time PCR based on single copy gene sequence for detection of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. J Periodontal Res 38(5):518–524

    Article  CAS  PubMed  Google Scholar 

  • Morrison DR, Clayton EW (2011) False positive newborn screening results are not always benign. Public Health Genom 14:173–177

    Article  CAS  Google Scholar 

  • Nalls MA, Wilson JG, Patterson NJ et al (2008) Admixture mapping of white cell count: genetic locus responsible for lower white blood cell count in the Health ABC and Jackson Heart studies. Am J Hum Genet 82(1):81–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng SB et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novais CM, Pires-Alves M, Silva FF (2004a) PCR em tempo real. Rev Biotecnol Cienc Des 33:10–14

    Google Scholar 

  • Novais CM, Pires-Alves M, Silva FF (2004b) PCR em tempo real. Rev Biotecnol Cienc Des 33:10–13

    Google Scholar 

  • Pagon RA, Hanson NB, Neufeld-Kaiser W, Covington ML (2001) Genetic testing. West J Med 174:344347

    Article  Google Scholar 

  • Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413435

    Article  Google Scholar 

  • Pasche B, Absher D (2011) Whole-genome sequencing: a step closer to personalized medicine. JAMA 305:1596–1597

    Article  CAS  PubMed  Google Scholar 

  • Patzelt D (2004) History of forensic serology and molecular genetics in the sphere of activity of the German Society for Forensic Medicine. Forensic Sci Int 144:185–191

    Article  CAS  PubMed  Google Scholar 

  • Phillips KA, Deverka PA, Hooker GW, Douglas MP (2018) Genetic test availability and spending: where are we now? Where are we going? Health Aff (Millwood) 37:710716

    Article  Google Scholar 

  • Pickard BS, Millar JK, Porteous DJ, Muir WJ, Blackwood DHR (2005) Cytogenetics and gene discovery in psychiatric disorders. Pharmacogenomics J 5:81

    Article  CAS  PubMed  Google Scholar 

  • Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Sengupta M, Dutta A, Bhattacharyya K, Bag SK, Dutta C et al (2011) Indian genetic disease database. Nucleic Acids Res 39:D933–D938

    Article  CAS  PubMed  Google Scholar 

  • Rai E, Mahajan A, Kumar P, Angural A, Dhar MK, Razdan S et al (2016) Whole exome screening identifies novel and recurrent WISP3 mutations causing progressive Pseudorheumatoid Dysplasia in Jammu and Kashmir. India Sci Rep 6:27684

    Article  CAS  PubMed  Google Scholar 

  • Ratan ZA, Zaman SB, Mehta V, Haidere MF, Runa NJ, Akter N (2017) Application of fluorescence in situ hybridization (FISH) technique for the detection of genetic aberration in medical science. Cureus 9:e1325

    PubMed  PubMed Central  Google Scholar 

  • ReichalCp RS (2020) Occurrence of behavioral changes and its management in persons with mental illness due to lunar effects. Drug Invention Today. competitive strategy model and its impact on micro business unit of local development banksin jawa pjaee, 17 (7) (2020) 642

    Google Scholar 

  • Richter T, Nestler-Parr S, Babela R, Khan ZM, Tesoro T, Molsen E et al (2015) Rare disease terminology and definitions-a systematic global review: report of the ISPOR rare disease special interest group. Value Health 18:906–914

    Article  PubMed  Google Scholar 

  • Rooney DE, Czepulkowski BH (1992) Human cytogenetics: malignancy and acquired abnormalities. IRL Press, Oxford

    Book  Google Scholar 

  • Roses AD (2000) Pharmacogenetics and the practice of medicine. Nature 405:857–865

    Article  CAS  PubMed  Google Scholar 

  • Salari K, Choudhry S, Tang H et al (2005) Genetic admixture and asthma-related phenotypes in Mexican American and Puerto Rican asthmatics. Genet Epidemiol 29(1):76–86

    Article  PubMed  Google Scholar 

  • Saldarriaga W, Garcı’a-Perdomo HA, Arango-Pineda J, Fonseca J (2015) Karyotype versus genomic hybridization for the prenatal diagnosis of chromosomal abnormalities: a meta-analysis. Am J Obstet Gynecol 212(330):e1–e10

    Google Scholar 

  • Schaeffer AJ, Chung J, Heretis K, Wong A, Ledbetter DH, Lese MC (2004) Comparative genomic hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages. Am J Hum Genet 74(6):1168–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schieppati A, Henter JI, Daina E, Aperia A (2008) Why rare diseases are an important medical and social issue. Lancet 371:2039–2041

    Article  PubMed  Google Scholar 

  • Schulze A, Lindner M, Kohlmuller D et al (2003) Expanded newborn screening for inborn errors of metabolism by electrospray ionization–tandem mass spectrometry: results, outcome, and implications. Pediatrics 111:1399–1406

    Article  PubMed  Google Scholar 

  • Sehnert AJ, Rhees B, Comstock D, de Feo E, Heilek G, Burke J et al (2011) Optimal detection of fetal chromosomal abnormalities by massively parallel DNA sequencing of cell-free fetal DNA from maternal blood. Clin Chem 57:1042–1049

    Article  CAS  PubMed  Google Scholar 

  • Sequeiros J et al (2012) The wide variation of definitions of genetic testing in international recommendations, guidelines and reports. J Commun Genet 3:113–124

    Article  Google Scholar 

  • Speers DJ, Ryan S, Harnett G, Chidlow G (2003) Diagnosis of malaria aided by polymerase chain reaction in two cases with low-level parasitaemia. Inter Med J 33(12):613–615

    Article  CAS  Google Scholar 

  • Spolidorio DMP, Spolidorio LC (2005) Técnicas básicas de biologia molecular. In: Estrela C (ed) Metodologia científica-Ciência-Ensino-Pesquisa. Artes Médicas, São Paulo

    Google Scholar 

  • Vissers LE et al (2003) Array-based comparative genomic hybridization for the genome-wide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet 73:1261–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wapner RJ, Martin CL, Levy B et al (2012a) Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med 367:21752184

    Article  Google Scholar 

  • Wapner RJ, Martin CL, Levy B, Ballif BC, Eng CM, Zachary JM et al (2012b) Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med 367:2175–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler DA et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876

    Article  CAS  PubMed  Google Scholar 

  • Worthey EA, Mayer AN, Syverson GD, Helbling D, Bonacci BB, Decker B et al (2011) Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med 13:255–262

    Article  PubMed  Google Scholar 

  • Xue Y, Ankala A, Wilcox WR, Hegde MR (2015) Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med 17:444451

    Article  Google Scholar 

  • Yu SCY, Jiang P, Choy KW, Chan KCA, Won H-S, Leung WC et al (2013) Noninvasive prenatal molecular karyotyping from maternal plasma. PLoS One 8:e60968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chettinad Academy of Research Education for its continued support and encouragement.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

K, I.B., Veerabathiran, R. (2024). Techniques for the Diagnosis of Rare Genetic Disorders. In: Umair, M., Rafeeq, M., Alam, Q. (eds) Rare Genetic Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-99-9323-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9323-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9322-2

  • Online ISBN: 978-981-99-9323-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics