Skip to main content

Drug Delivery in Biotechnology: Present and Future

  • Chapter
  • First Online:
Concepts in Pharmaceutical Biotechnology and Drug Development

Abstract

Nanobiotechnology is the integration of nanotechnology with biotechnology, with a specific emphasis on the utilisation of nanoscale techniques in biological systems. Nanobiotechnology significantly contributes to the field of drug delivery by utilising nanoscale materials, such as nanoparticles and liposomes, to enhance the effectiveness of medications. Nanoparticles possess a reduced size and altered properties that provide accurate drug localisation, regulated release, and enhanced bioavailability. This offers distinctive resolutions to challenges encountered in conventional drug administration techniques. Herein we highlight the significance of achieving optimal drug delivery and subsequently explore the potential of biotechnology to address these challenges. We explore contemporary methodologies, including the utilisation of nanotechnology for targeted drug delivery. Additionally, we discuss intelligent drug delivery systems, including those that are triggered by specific inputs or guided by artificial intelligence. The development of biodegradable implants, the use of artificial intelligence for personalised treatment, and the creation of microbes for the administration of drugs are also discussed. The chapter includes coverage of cutting-edge technology such as 3D printing for the customisation of medication forms and continuous monitoring devices, highlighting the important ethical inquiries and safety hazards linked to these novel methods. Finally, it provides a concise overview of the key progress made and anticipated breakthroughs in drug delivery that have the potential to transform healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Hardcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdella S, Abid F, Youssef SH, Kim S, Afinjuomo F, Malinga C, Song Y, Garg S (2023) pH and its applications in targeted drug delivery. Drug Discov Today 28:103414

    Article  CAS  PubMed  Google Scholar 

  • Adler-Moore J, Proffitt RT (2002) AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J Antimicrob Chemother 49:21–30. https://doi.org/10.1093/jac/49.suppl_1.21

    Article  CAS  PubMed  Google Scholar 

  • Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1911

    Article  PubMed  PubMed Central  Google Scholar 

  • Alcaraz J, Cinquin P, Martin DK (2018) Tackling the concept of symbiotic implantable medical devices with nanobiotechnologies. Biotechnol J 13:1800102

    Article  CAS  Google Scholar 

  • Al-Jamal W, Kostarelos K (2011) Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 44:1094–1104

    Article  CAS  PubMed  Google Scholar 

  • Allami RH, Yousif MG (2023) Integrative AI-driven strategies for advancing precision medicine in infectious diseases and beyond: a novel multidisciplinary approach. arXiv Prepr arXiv 2307:15228

    Google Scholar 

  • Allen TM, Hansen C (1991) Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta 1068:133–141

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    Article  CAS  PubMed  Google Scholar 

  • Anusha K, Jasmitha KSM, Sattibabu K, Reddy G (2023) Integrating of artificial intelligence in drug discovery and development: a comparative study. Pharmacophore 14:35–40. https://doi.org/10.51847/anvmzrz4x4

    Article  Google Scholar 

  • Aslam H, Shukrullah S, Naz MY, Fatima H, Hussain H, Ullah S, Assiri MA (2022) Current and future perspectives of multifunctional magnetic nanoparticles based controlled drug delivery systems. J Drug Deliv Sci Technol 67:102946

    Article  CAS  Google Scholar 

  • Awad A, Madla CM, McCoubrey LE, Ferraro F, Gavins FKH, Buanz A, Gaisford S, Orlu M, Siepmann F, Siepmann J (2022) Clinical translation of advanced colonic drug delivery technologies. Adv Drug Deliv Rev 181:114076

    Article  CAS  PubMed  Google Scholar 

  • Badwaik HR, Kumari L, Nakhate K, Verma VS, Sakure K (2019) Chapter 13—phytoconstituent plumbagin: chemical, biotechnological and pharmaceutical aspects. In: Atta-ur-Rahman (ed) Bioactive natural products. Elsevier, pp 415–460

    Chapter  Google Scholar 

  • Balazs DA, Godbey WT (2011) Liposomes for use in gene delivery. J Drug Deliv 2011:1

    Article  Google Scholar 

  • Beck A, Goetsch L, Dumontet C, Corvaïa N (2017) Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov 16:315–337

    Article  CAS  PubMed  Google Scholar 

  • Bhatia S (2016) Natural polymer drug delivery systems: nanoparticles, plants, and algae

    Book  Google Scholar 

  • Billmeier U, Dieterich W, Neurath MF, Atreya R (2016) Molecular mechanism of action of anti-tumor necrosis factor antibodies in inflammatory bowel diseases. World J Gastroenterol 22:9300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birla S, Singh N, Shukla NK (2022) Nanotechnology: device design and applications. CRC Press

    Book  Google Scholar 

  • Boas U, Christensen JB, Heegaard PMH (2007) Dendrimers in medicine and biotechnology: new molecular tools. Royal Society of Chemistry

    Google Scholar 

  • Bovier PA (2008) Epaxal®: a virosomal vaccine to prevent hepatitis a infection. Expert Rev Vaccines 7:1141–1150

    Article  CAS  PubMed  Google Scholar 

  • Brahmer JR, Hammers H, Lipson EJ (2015) Nivolumab: targeting PD-1 to bolster antitumor immunity. Future Oncol 11:1307–1326

    Article  CAS  PubMed  Google Scholar 

  • Burrows R, Lambrix E (2022) mRNA vaccines: a growing and complex IP landscape. Vaccine Insights 1:191–199

    Article  Google Scholar 

  • Bzowska M, Karabasz A, Szczepanowicz K (2018) Encapsulation of camptothecin into pegylated polyelectrolyte nanocarriers. Colloids Surf A Physicochem Eng Asp 557:36–42

    Article  CAS  Google Scholar 

  • Cagel M, Grotz E, Bernabeu E, Moretton MA, Chiappetta DA (2017) Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discov Today 22:270–281. https://doi.org/10.1016/j.drudis.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  • Callura JM, Cantor CR, Collins JJ (2012) Genetic switchboard for synthetic biology applications. Proc Natl Acad Sci 109:5850–5855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cessak G, Kuzawińska O, Burda A, Lis K, Wojnar M, Mirowska-Guzel D, Bałkowiec-Iskra E (2014) TNF inhibitors–mechanisms of action, approved and off-label indications. Pharmacol Rep 66:836–844

    Article  CAS  PubMed  Google Scholar 

  • Chavda VP, Jogi G, Paiva-Santos AC, Kaushik A (2022) Biodegradable and removable implants for controlled drug delivery and release application. Expert Opin Drug Deliv 19:1177–1181. https://doi.org/10.1080/17425247.2022.2110065

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Elenee Argentinis JD, Weber G (2016) IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research. Clin Ther 38:688–701. https://doi.org/10.1016/j.clinthera.2015.12.001

    Article  PubMed  Google Scholar 

  • Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9:1–14

    Article  CAS  Google Scholar 

  • Chilkoti A, Dreher MR, Meyer DE, Raucher D (2002) Targeted drug delivery by thermally responsive polymers. Adv Drug Deliv Rev 54:613–630

    Article  CAS  PubMed  Google Scholar 

  • Chouhan D, Janani G, Chakraborty B, Nandi SK, Mandal BB (2018) Functionalized PVA–silk blended nanofibrous mats promote diabetic wound healing via regulation of extracellular matrix and tissue remodelling. J Tissue Eng Regen Med 12:e1559–e1570

    Article  CAS  PubMed  Google Scholar 

  • Chow D, Nunalee ML, Lim DW, Simnick AJ, Chilkoti A (2008) Peptide-based biopolymers in biomedicine and biotechnology. Mater Sci Eng R Rep 62:125–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Connors JM, Jurczak W, Straus DJ, Ansell SM, Kim WS, Gallamini A, Younes A, Alekseev S, Illés Á, Picardi M (2018) Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med 378:331–344

    Article  CAS  PubMed  Google Scholar 

  • Corrigan PA, Cicci TA, Auten JJ, Lowe DK (2014) Ado-trastuzumab emtansine: a HER2-positive targeted antibody-drug conjugate. Ann Pharmacother 48:1484–1493

    Article  CAS  PubMed  Google Scholar 

  • Crommelin DJA, Mastrobattista E, Hawe A, Hoogendoorn KH, Jiskoot W (2020) Shifting paradigms revisited: biotechnology and the pharmaceutical sciences. J Pharm Sci 109:30–43

    Article  CAS  PubMed  Google Scholar 

  • Daglar B, Ozgur E, Corman ME, Uzun L, Demirel GB (2014) Polymeric nanocarriers for expected nanomedicine: current challenges and future prospects. RSC Adv 4:48639–48659

    Article  CAS  Google Scholar 

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522

    Article  CAS  PubMed  Google Scholar 

  • Dhanaraj SA, Muralidharan S, Kanniappan P, Hui WTS, Qi LL (2016) Formulation and evaluation of chitosan nanospheres containing methotrexate targeted drug delivery system. J Young Pharm 8:330

    Article  CAS  Google Scholar 

  • du Plessis HL, Marais EB, Mohammed F, Kotze AF (2014) Applications of lipid based formulation technologies in the delivery of biotechnology-based therapeutics. Curr Pharm Biotechnol 15:659–672

    Article  PubMed  Google Scholar 

  • El Andaloussi S, Mäger I, Breakefield XO, Wood MJA (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357

    Article  PubMed  Google Scholar 

  • Farokhzad OC, Khademhosseini A, Jon S, Hermmann A, Cheng J, Chin C, Kiselyuk A, Teply B, Eng G, Langer R (2005) Microfluidic system for studying the interaction of nanoparticles and microparticles with cells. Anal Chem 77:5453–5459

    Article  CAS  PubMed  Google Scholar 

  • García-Estrada P, García-Bon MA, López-Naranjo EJ, Basaldúa-Pérez DN, Santos A, Navarro-Partida J (2021) Polymeric implants for the treatment of intraocular eye diseases: trends in biodegradable and non-biodegradable materials. Pharmaceutics 13:701

    Article  PubMed  PubMed Central  Google Scholar 

  • Giantonio BJ (2009) Goldie–Coldman and bevacizumab beyond disease progression. Nat Rev Clin Oncol 6:311–312

    Article  CAS  PubMed  Google Scholar 

  • Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, Langer R, Farokhzad OC (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci 105:2586–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guenoun J, Koning GA, Doeswijk G, Bosman L, Wielopolski PA, Krestin GP, Bernsen MR (2012) Cationic Gd-DTPA liposomes for highly efficient labeling of mesenchymal stem cells and cell tracking with MRI. Cell Transplant 21:191–205

    Article  PubMed  Google Scholar 

  • Hamamoto R, Suvarna K, Yamada M, Kobayashi K, Shinkai N, Miyake M, Takahashi M, Jinnai S, Shimoyama R, Sakai A (2020) Application of artificial intelligence technology in oncology: towards the establishment of precision medicine. Cancers (Basel) 12:3532

    Article  PubMed  Google Scholar 

  • Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV (2015) Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 207:18–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Hosseinkhani H, Mohammadinejad R, Roveimiab Z, Hueng D, Ou K, Domb AJ (2014) Polymeric nanoparticles for therapy and imaging. Polym Adv Technol 25:1216–1225

    Article  CAS  Google Scholar 

  • Hersh AM, Alomari S, Tyler BM (2022) Crossing the blood-brain barrier: advances in nanoparticle technology for drug delivery in neuro-oncology. Int J Mol Sci 23:4153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrkach J, Von Hoff D, Ali MM, Andrianova E, Auer J, Campbell T, De Witt D, Figa M, Figueiredo M, Horhota A (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4:128ra39

    Article  PubMed  Google Scholar 

  • Iwata A, Sai S, Nitta Y, Chen M, de Fries-Hallstrand R, Dalesandro J, Thomas R, Allen MD (2001) Liposome-mediated gene transfection of endothelial nitric oxide synthase reduces endothelial activation and leukocyte infiltration in transplanted hearts. Circulation 103:2753–2759

    Article  CAS  PubMed  Google Scholar 

  • Jeong WY, Kwon M, Choi HE, Kim KS (2021) Recent advances in transdermal drug delivery systems: a review. Biomater Res 25:1–15

    Article  Google Scholar 

  • Jesorka A, Orwar O (2008) Liposomes: technologies and analytical applications. Annu Rev Anal Chem 1:801–832

    Article  CAS  Google Scholar 

  • Johnson AR, Forster SP, White D, Terife G, Lowinger M, Teller RS, Barrett SE (2021) Drug eluting implants in pharmaceutical development and clinical practice. Expert Opin Drug Deliv 18:577–593

    Article  CAS  PubMed  Google Scholar 

  • Kaida-Yip F, Deshpande K, Saran T, Vyas D (2018) Biosimilars: review of current applications, obstacles, and their future in medicine. World J Clin Cases 6:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39:268–307

    Article  CAS  Google Scholar 

  • Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ (2015) 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release 217:308–314

    Article  CAS  PubMed  Google Scholar 

  • Khorasani S, Danaei M, Mozafari MR (2018) Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci Technol 79:106–115

    Article  CAS  Google Scholar 

  • Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O (2016) Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12:655–664

    Article  CAS  PubMed  Google Scholar 

  • Kondo E, Iioka H, Saito K (2021) Tumor-homing peptide and its utility for advanced cancer medicine. Cancer Sci 112:2118–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kos IA, Azevedo VF, Neto DE, Kowalski SC (2018) The biosimilars journey: current status and ongoing challenges. Drugs Context 7:1

    Article  Google Scholar 

  • Kowalczuk A, Trzcinska R, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2014) Loading of polymer nanocarriers: factors, mechanisms and applications. Prog Polym Sci 39:43–86. https://doi.org/10.1016/j.progpolymsci.2013.10.004

    Article  CAS  Google Scholar 

  • Kwon GS (2003) Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 20:357

    Article  CAS  PubMed  Google Scholar 

  • Lambert JM, Chari RVJ (2014) Ado-trastuzumab emtansine (T-DM1): an antibody–drug conjugate (ADC) for HER2-positive breast cancer. J Med Chem 57(16):6949

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Kim SH, Cho JA, Kim CW (2011) Introduction of the CIITA gene into tumor cells produces exosomes with enhanced anti-tumor effects. Exp Mol Med 43:281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehto T, Kurrikoff K, Langel Ü (2012) Cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv 9:823–836

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yao W, Rao Y, Lu X, Gao J (2017) pH-responsive carriers for oral drug delivery: challenges and opportunities of current platforms. Drug Deliv 24:569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Chen B, Shi W, Huang W, Qian H (2022) Ionic liquids for enhanced drug delivery: recent progress and prevailing challenges. Mol Pharm 19:1033–1046

    Article  CAS  PubMed  Google Scholar 

  • Lombardo D, Kiselev MA, Caccamo MT (2019) Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019:1

    Article  Google Scholar 

  • Luo X, Liu Y, Qin Z, Jin Z, Xu L, Liu Y, Cao L, He F, Gu X, Ouyang X (2018) Studies on the antibacterial activity and mechanism of antimicrobial peptides against drug-resistant bacteria. J Biomed Nanotechnol 14:601–608

    Article  CAS  PubMed  Google Scholar 

  • MacDonald IC, Deans TL (2016) Tools and applications in synthetic biology. Adv Drug Deliv Rev 105:20–34. https://doi.org/10.1016/j.addr.2016.08.008

    Article  CAS  PubMed  Google Scholar 

  • Majeed N, Panigrahi KCS, Sukla LB, John R, Panigrahy M (2020) Application of carbon nanomaterials in plant biotechnology. Mater Today Proc 30:340–345

    Article  CAS  Google Scholar 

  • Mandal S, Anees M, Singh H, Unnisa A (2023) Role of nanoparticles in chemotherapy in cancer and drug delivery: current scenario and future challenges. In: Sustainable nanomaterials for biomedical engineering: impacts, challenges, and future prospects, p 227

    Chapter  Google Scholar 

  • Mirza Z, Karim S (2021) Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges. In: Seminars in cancer biology, vol 69. Elsevier, pp 226–237

    Google Scholar 

  • Mohammed Y, Holmes A, Kwok PCL, Kumeria T, Namjoshi S, Imran M, Matteucci L, Ali M, Tai W, Benson HAE (2022) Advances and future perspectives in epithelial drug delivery. Adv Drug Deliv Rev 186:114293

    Article  CAS  PubMed  Google Scholar 

  • Mohd AB (2022) Ai based advanced health care systems

    Google Scholar 

  • Morris BA (2022) The science and technology of flexible packaging: multilayer films from resin and process to end use. William Andrew

    Google Scholar 

  • Muldoon JJ, Kandula V, Hong M, Donahue PS, Boucher JD, Bagheri N, Leonard JN (2021) Model-guided design of mammalian genetic programs. Sci Adv 7:eabe9375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mura S, Couvreur P (2012) Nanotheranostics for personalized medicine. Adv Drug Deliv Rev 64:1394–1416. https://doi.org/10.1016/j.addr.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  • Muthu MS, Feng S-S (2013) Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success. Expert Opin Drug Deliv 10:151–155

    Article  CAS  PubMed  Google Scholar 

  • Narayanan RR, Durga N, Nagalakshmi S (2022) Impact of artificial intelligence (AI) on drug discovery and product development. Indian J Pharm Educ Res 56:s387–s397. https://doi.org/10.5530/ijper.56.3s.146

    Article  Google Scholar 

  • Orive G, Hernández RM, Gascón AR, Domínguez-Gil A, Pedraz JL (2003) Drug delivery in biotechnology: present and future. Curr Opin Biotechnol 14:659–664. https://doi.org/10.1016/j.copbio.2003.10.007

    Article  CAS  PubMed  Google Scholar 

  • Palanca-Wessels MCA, Czuczman M, Salles G, Assouline S, Sehn LH, Flinn I, Patel MR, Sangha R, Hagenbeek A, Advani R (2015) Safety and activity of the anti-CD79B antibody–drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol 16:704–715

    Article  CAS  PubMed  Google Scholar 

  • Palo M, Holländer J, Suominen J, Yliruusi J, Sandler N (2017) 3D printed drug delivery devices: perspectives and technical challenges. Expert Rev Med Devices 14:685–696. https://doi.org/10.1080/17434440.2017.1363647

    Article  CAS  PubMed  Google Scholar 

  • Paradise J, Wolf SM, Ramachandran G, Kokkoli E, Hall R, Kuzma J (2008) Developing oversight frameworks for nanobiotechnology. Minn JL Sci Tech 9:399

    Google Scholar 

  • Park K (2016) Drug delivery research: the invention cycle. Mol Pharm 13:2143–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park H, Otte A, Park K (2022) Evolution of drug delivery systems: from 1950 to 2020 and beyond. J Control Release 342:53–65

    Article  CAS  PubMed  Google Scholar 

  • Philippot JR, Schuber F (1994) Liposomes as tools in basic research and industry. CRC Press

    Google Scholar 

  • Pitt J, Wilcox KC, Tortelli V, Diniz LP, Oliveira MS, Dobbins C, Yu X-W, Nandamuri S, Gomes FCA, DiNunno N (2017) Neuroprotective astrocyte-derived insulin/IGF-1 stimulate endocytic processing and extracellular release of neuron-bound Aβ oligomers. Mol Biol Cell 28:2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabiee N, Khatami M, Jamalipour Soufi G, Fatahi Y, Iravani S, Varma RS (2021) Diatoms with invaluable applications in nanotechnology, biotechnology, and biomedicine: recent advances. ACS Biomater Sci Eng 7:3053–3068

    Article  CAS  PubMed  Google Scholar 

  • Rahimpour Y, Hamishehkar H (2012) Liposomes in cosmeceutics. Expert Opin Drug Deliv 9:443–455

    Article  CAS  PubMed  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichert JM (2008) Monoclonal antibodies as innovative therapeutics. Curr Pharm Biotechnol 9:423–430

    Article  CAS  PubMed  Google Scholar 

  • Sabbagh F, Kim BS (2022) Recent advances in polymeric transdermal drug delivery systems. J Control Release 341:132–146

    Article  CAS  PubMed  Google Scholar 

  • Salehi R, Rasouli S, Hamishehkar H (2015) Smart thermo/pH responsive magnetic nanogels for the simultaneous delivery of doxorubicin and methotrexate. Int J Pharm 487:274–284

    Article  CAS  PubMed  Google Scholar 

  • Schütz CA, Juillerat-Jeanneret L, Mueller H, Lynch I, Riediker M (2013) Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine 8:449–467

    Article  PubMed  Google Scholar 

  • Schwendener RA (2014) Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines 2:159–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma B, Sharma S, Jain P (2021) Leveraging advances in chemistry to design biodegradable polymeric implants using chitosan and other biomaterials. Int J Biol Macromol 169:414–427

    Article  PubMed  Google Scholar 

  • Sharma AR, Lee YH, Bat-Ulzii A, Bhattacharya M, Chakraborty C, Lee SS (2022) Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J Nanobiotechnology 20:1–21. https://doi.org/10.1186/s12951-022-01650-z

    Article  Google Scholar 

  • Shitara K, Bang Y-J, Iwasa S, Sugimoto N, Ryu M-H, Sakai D, Chung H-C, Kawakami H, Yabusaki H, Lee J (2020) Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med 382:2419–2430

    Article  CAS  PubMed  Google Scholar 

  • Shvets VI, Kubatiev AA, Shobolov DL, Balabanyan VY (2013) Biopharmaceutical technologies based on phospholipids (chemistry, biochemistry, biophysics, biotechnology, physiology, immunology, pharmacology, and production technologies of medicinal and diagnostic preparations, including nanosized preparations). Rev J Chem 3:179–206

    Article  Google Scholar 

  • Sun T-Y, Wang Q, Zhang J, Wu T, Zhang F (2013) Trastuzumab-peptide interactions: mechanism and application in structure-based ligand design. Int J Mol Sci 14:16836–16850

    Article  PubMed  PubMed Central  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16

    Article  CAS  PubMed  Google Scholar 

  • Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–135. https://doi.org/10.1016/j.addr.2010.03.011

    Article  CAS  PubMed  Google Scholar 

  • Tsiftsoglou AS, Ruiz S, Schneider CK (2013) Development and regulation of biosimilars: current status and future challenges. BioDrugs 27:203–211

    Article  CAS  PubMed  Google Scholar 

  • van der Oost J, Patinios C (2023) The genome editing revolution. Trends Biotechnol 41:396–409. https://doi.org/10.1016/j.tibtech.2022.12.022

    Article  CAS  PubMed  Google Scholar 

  • Van Tran V, Moon J-Y, Lee Y-C (2019) Liposomes for delivery of antioxidants in cosmeceuticals: challenges and development strategies. J Control Release 300:114–140

    Article  PubMed  Google Scholar 

  • Vhora I, Khatri N, Misra A (2021) Applications of polymers in parenteral drug delivery. In: Applications of polymers in drug delivery. Elsevier, pp 221–261

    Chapter  Google Scholar 

  • Vizirianakis IS (2004) Challenges in current drug delivery from the potential application of pharmacogenomics and personalized medicine in clinical practice. Curr Drug Deliv 1:73–80

    Article  CAS  PubMed  Google Scholar 

  • Wening K, Breitkreutz J (2011) Oral drug delivery in personalized medicine: unmet needs and novel approaches. Int J Pharm 404:1–9

    Article  CAS  PubMed  Google Scholar 

  • Wolin EM (2012) The expanding role of somatostatin analogs in the management of neuroendocrine tumors. Gastrointest Cancer Res 5:161

    PubMed  PubMed Central  Google Scholar 

  • Wong CY, Al-Salami H, Dass CR (2020) Formulation and characterisation of insulin-loaded chitosan nanoparticles capable of inducing glucose uptake in skeletal muscle cells in vitro. J Drug Deliv Sci Technol 57:101738

    Article  CAS  Google Scholar 

  • Yin H, Yang J, Zhang Q, Wang H, Xu J, Zheng J (2017) iRGD as a tumor-penetrating peptide for cancer therapy. Mol Med Rep 15:2925–2930

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Hu W, Qin X (2008) The role of complement in the mechanism of action of rituximab for B-cell lymphoma: implications for therapy. Oncologist 13:954–966

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, S., Palei, N.N., Dinda, S.C., Dhar, A.K. (2024). Drug Delivery in Biotechnology: Present and Future. In: Bose, S., Shukla, A.C., Baig, M.R., Banerjee, S. (eds) Concepts in Pharmaceutical Biotechnology and Drug Development . Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-97-1148-2_7

Download citation

Publish with us

Policies and ethics