Skip to main content

Gene Therapy in Molecular Biology and Drug Delivery

  • Chapter
  • First Online:
Concepts in Pharmaceutical Biotechnology and Drug Development

Part of the book series: Interdisciplinary Biotechnological Advances ((IBA))

  • 146 Accesses

Abstract

The objective of gene therapy is to manipulate/modify the gene expression or modify living cell characteristics for therapeutic utilization. It aims to achieve therapeutic effects by either inserting novel genes, rectifying or substituting the genes that are abnormal, or modifying the pre-existing gene expression. The therapy shows potential in addressing a diverse array of genetic and acquired disorders. This includes certain types of cancer, hereditary genetic diseases like muscular dystrophy and cystic fibrosis, and other circumstances where genetic factors have a significant influence. Gene therapy can be accomplished by several mechanisms, namely, gene editing, gene replacement, gene addition, and gene silencing. Gene replacement involves the replacement of malfunctioning genes with the functional copy in the patient’s cells. Gene editing pertains to technologies like CRISPR-Cas9 to edit the specific gene in the patient’s cells. In a genetic condition caused by a missing gene, the gene addition procedure can add a functioning copy of that gene to the patient’s cells to compensate for the deficiencies. In genetic disorders resulting from the overexpression of genes, gene silencing can be applied to reduce the expression or downregulation of these genes by techniques such as RNA interference (RNAi). Gene therapy holds promising possibilities and represents an innovative approach to drug delivery. It has the capacity to eliminate the necessity for frequent injections of proteins or medications, thereby alleviating the challenges associated with adhering to external drug schedules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Hardcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aigner A (2007) Applications of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl Microbiol Biotechnol 76:9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabi F, Mansouri V, Ahmadbeigi N (2022) Gene therapy clinical trials, where do we go? An overview. Biomed Pharmacother 153:113324

    Article  CAS  PubMed  Google Scholar 

  • Bobbin ML, Rossi JJ (2016) RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu Rev Pharmacol Toxicol 56:103–122

    Article  CAS  PubMed  Google Scholar 

  • Bulcha JT, Wang Y, Ma H, Tai PW, Gao G (2021) Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 6(1):53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Guo Z, Tian H, Chen X (2016) Production and clinical development of nanoparticles for gene delivery. Mol Ther Methods Clin Dev 3:16023

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W, Hu Y, Ju D (2020) Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm Sin B 10(8):1347–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockrell AS, Kafri T (2007) Gene delivery by lentivirus vectors. Mol Biotechnol 36:184–204

    Article  CAS  PubMed  Google Scholar 

  • Cotrim AP, Baum BJ (2008) Gene therapy: some history, applications, problems, and prospects. Toxicol Pathol 36(1):97–103

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Menezes ME, Bhatia S, Wang XY, Emdad L, Sarkar D, Fisher PB (2015) Gene therapies for cancer: strategies, challenges and successes. J Cell Physiol 230(2):259–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Brown AM, Jenkins C, Campbell K (2020) Viral vector systems for gene therapy: a comprehensive literature review of progress and biosafety challenges. Applied Biosafety 25(1):7–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo X, Huang L (2012) Recent advances in nonviral vectors for gene delivery. Acc Chem Res 45(7):971–979

    Article  CAS  PubMed  Google Scholar 

  • Lundstrom K (2018) Viral vectors in gene therapy. Diseases 6(2):42

    Article  PubMed  PubMed Central  Google Scholar 

  • Lundstrom K (2019) RNA viruses as tools in gene therapy and vaccine development. Genes 10(3):189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, Goodspeed K, Gray SJ, Kay CN, Boye SL, Boye SE, George LA, Salabarria S, Corti M (2021) Current clinical applications of in vivo gene therapy with AAVs. Mol Ther 29(2):464–488

    Article  CAS  PubMed  Google Scholar 

  • Ng AP, Alexander WS (2017) Haematopoietic stem cells: past, present and future. Cell death discovery 3(1):1–4

    Article  Google Scholar 

  • Pola S, Padi D (2023) “Gene therapy”: ethical and regulatory issues. In: Novel platforms for drug delivery applications. Woodhead Publishing, Cambridge, pp 607–618

    Chapter  Google Scholar 

  • Schlimgen R, Howard J, Wooley D, Thompson M, Baden LR, Yang OO, Christiani DC, Mostoslavsky G, Diamond DV, Duane EG, Byers K (2016) Risks associated with lentiviral vector exposures and prevention strategies. J Occup Environ Med 58(12):1159

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma IM, Weitzman MD (2005) Gene therapy: twenty-first century medicine. Annu Rev Biochem 74:711–738

    Article  CAS  PubMed  Google Scholar 

  • Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Tai PW, Gao G (2019) Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 18(5):358–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirth T, Parker N, Ylä-Herttuala S (2013) History of gene therapy. Gene 525(2):162–169

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Jiang X, Huang L (2019) RNA interference technology. Compr Biotechnol 2019:560

    Google Scholar 

  • Zhang F, Wen Y, Guo X (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23(R1):R40–R46

    Article  CAS  PubMed  Google Scholar 

  • Zheng CX, Wang SM, Bai YH, Luo TT, Wang JQ, Dai CQ, Guo BL, Luo SC, Wang DH, Yang YL, Wang YY (2018) Lentiviral vectors and adeno-associated virus vectors: useful tools for gene transfer in pain research. Anat Rec 301(5):825–836

    Article  Google Scholar 

  • Zu H, Gao D (2021) Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J 23(4):78

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Lakshmi Narayanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narayanan, D.K.L. (2024). Gene Therapy in Molecular Biology and Drug Delivery. In: Bose, S., Shukla, A.C., Baig, M.R., Banerjee, S. (eds) Concepts in Pharmaceutical Biotechnology and Drug Development . Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-97-1148-2_14

Download citation

Publish with us

Policies and ethics