Skip to main content

Genetic Model Organisms

  • Chapter
  • First Online:
Genetic Studies in Model Organisms

Part of the book series: KAIST Research Series ((KAISTRS))

  • 95 Accesses

Abstract

Model organisms are non-human species used for studying biological processes in laboratories. They are selected based on advantageous properties such as easy culture and large cellular structures. Genetic model organisms have additional properties such as efficient mating, mutagenesis, and fecundity. All model organisms have advantages and limitations. Choosing the most appropriate organism is critical in studying specific biological questions. This chapter compares a few widely studied eukaryotic genetic models. We will begin with a brief introduction to fungal microorganisms like yeast as unicellular eukaryotic models. Next, we will discuss C. elegans as an excellent invertebrate genetic model that allows a systematic analysis of cellular events, including cell fate specification and programmed cell death. Zebrafish is an invaluable vertebrate genetic model. We will discuss genetic and gynogenetic methods for the genetic analysis of various biological issues in fish. Lastly, the mouse lemur will be introduced as a primate model. The natural population of mouse lemurs accumulates abundant spontaneous mutations. We will discuss the potential use of lemurs as a primate genetic model. Drosophila and mice are crucial genetic models and will be discussed in later chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Hardcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838–849

    Article  CAS  PubMed  Google Scholar 

  2. Roman H (1986) The early days of yeast genetics: a personal narrative. Annu Rev Genet 20:1–12

    Article  CAS  PubMed  Google Scholar 

  3. Liu H, Huang J, Sun X, Li J, Hu Y, Yu L, Liti G, Tian D, Hurst LD, Yang S (2018) Tetrad analysis in plants and fungi finds large differences in gene conversion rates but no GC bias. Nat Ecol Evol 2:164–173

    Article  PubMed  Google Scholar 

  4. Kim J, Koo BK, Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21:571–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hasunuma K, Yabe N (2009) Classical to modern genetics. Genet Mol Biol 1:72–83

    Google Scholar 

  6. Beadle GW, Tatum EL (1941) Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci USA 27:499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tatum EL, Beadle GW (1942) Genetic control of biochemical reactions in Neurospora: an "Aminobenzoicless" mutant. Proc Natl Acad Sci USA 28:234–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pontecorvo G, Roper JA, Hemmons LM, Macdonald KD, Bufton AW (1953) The genetics of aspergillus nidulans. Adv Genet 5:141–238

    Article  CAS  PubMed  Google Scholar 

  9. Meyerowitz EM (2001) Prehistory and history of Arabidopsis research. Plant Physiol 125:15–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Provart NJ, Alonso J, Assmann SM, Bergmann D, Brady SM, Brkljacic J, Browse J, Chapple C, Colot V, Cutler S et al (2016) 50 years of Arabidopsis research: highlights and future directions. New Phytol 209:921–944

    Article  CAS  PubMed  Google Scholar 

  11. Milo R, Jorgensen P, Moran U, Weber G, Springer M (2010) BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38:D750–D753

    Article  CAS  PubMed  Google Scholar 

  12. Guenet JL (2005) The mouse genome. Genome Res 15:1729–1740

    Article  CAS  PubMed  Google Scholar 

  13. Castle WE, Little CC (1909) The peculiar inheritance of pink eyes among colored mice. Science 30:313–314

    Article  CAS  PubMed  Google Scholar 

  14. Kim J, Koo BK (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21:571–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brenner S (1966) Collinearity and the genetic code. Proc Royal Soc London B Biol Sci 164:170–180

    CAS  Google Scholar 

  17. Brenner S, Stretton AO, Kaplan S (1965) Genetic code: the 'nonsense' triplets for chain termination and their suppression. Nature 206:994–998

    Article  CAS  PubMed  Google Scholar 

  18. Corsi AK, Wightman B, Chalfie M (2015) A transparent window into biology: a primer on Caenorhabditis elegans. WormBook:1–31

    Google Scholar 

  19. Hodgkin J, Horvitz HR, Brenner S (1979) Nondisjunction mutants of the nematode Caenorhabditis elegans. Genetics 91:67–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    Article  CAS  PubMed  Google Scholar 

  21. Rose L, Gönczy P (2014) Polarity establishment, asymmetric division and segregation of fate determinants in early C. Elegans embryos. WormBook:1–43

    Google Scholar 

  22. Grunwald DJ, Eisen JS (2002) Headwaters of the zebrafish—emergence of a new model vertebrate. Nat Rev Genet 3:717–724

    Article  CAS  PubMed  Google Scholar 

  23. Streisinger G, Edgar RS, Denhardt GH (1964) Chromosome structure in phage T4. I. Circularity of the linkage map. Proc Natl Acad Sci USA 51:775–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ingham PW (1997) Zebrafish genetics and its implications for understanding vertebrate development. Hum Mol Genet 6:1755–1760

    Article  CAS  PubMed  Google Scholar 

  25. Hoppe PC, Illmensee K (1977) Microsurgically produced homozygous-diploid uniparental mice. Proc Natl Acad Sci USA 74:5657–5661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Streisinger G, Walker C, Dower N, Knauber D, Singer F (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291:293–296

    Article  CAS  PubMed  Google Scholar 

  27. Yaskowiak ES, Shears MA, Agarwal-Mawal A, Fletcher GL (2006) Characterization and multi-generational stability of the growth hormone transgene (EO-1alpha) responsible for enhanced growth rates in Atlantic Salmon. Transgenic Res 15:465–480

    Article  CAS  PubMed  Google Scholar 

  28. Ezran C, Karanewsky CJ, Pendleton JL, Sholtz A, Krasnow MR, Willick J, Razafindrakoto A, Zohdy S, Albertelli MA, Krasnow MA (2017) The mouse lemur, a genetic model organism for primate biology, behavior, and health. Genetics 206:651–664

    Article  PubMed  PubMed Central  Google Scholar 

  29. Roberts L (2019) Small, furry and powerful: are mouse lemurs the next big thing in genetics? Nature 570:151–154

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choi, KW. (2024). Genetic Model Organisms. In: Genetic Studies in Model Organisms. KAIST Research Series. Springer, Singapore. https://doi.org/10.1007/978-981-97-0830-7_2

Download citation

Publish with us

Policies and ethics