Skip to main content

Abstract

The dynamics of the atmospheric soliton over Bengkalis Island are investigated. We detected the signature of an atmospheric soliton from x-band weather radar images moving from land toward the open sea on April 7, 2022, from 00.20 to 01.20 local time. The calculation based on the single soliton solution of the KdV equation shows that the atmospheric soliton in this region has a maximum amplitude of around 625.47 m and an average internal velocity of 16.67 m/s. Solitons break up into convection cells when they reach the coastline. This breaking mechanism will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Zhang, D.B. Parsons, X. Xu, Y. Wang, J. Liu, A. Abulikemu, W. Shen, X. Zhang, S. Zhang, A modeling study of an atmospheric bore associated with a nocturnal convective system over China. J. Geophys. Res. Atmosph. 125(18), 1–26 (2020)

    Article  Google Scholar 

  2. K.R. Haghi, B. Geerts, H.G. Chipilski, A. Johnson, S. Degelia, D. Imy, D.B. Parsons, R.D. Adams-Selin, D.D. Turner, X. Wang, Bore-ing into nocturnal convection. Bull. Am. Meteor. Soc. 100(6), 1103–1121 (2019)

    Article  ADS  Google Scholar 

  3. J.W. Rottman, J.E. Simpson, The formation of internal bores in the atmosphere: a laboratory model. Q. J. R. Meteorol. Soc. 115(488), 941–963 (1989)

    Article  ADS  Google Scholar 

  4. D.B. Parsons, K.R. Haghi, K.T. Halbert, B. Elmer, J. Wang, The potential role of atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection over the Southern Great Plains. J. Atmos. Sci. 76(1), 43–68 (2019)

    Article  ADS  Google Scholar 

  5. K.R. Haghi, D.R. Durran, On the dynamics of atmospheric bores. J. Atmos. Sci. 78(1), 313–327 (2021)

    Article  ADS  Google Scholar 

  6. N.A. Crook, Trapping of low-level internal gravity waves. J. Atmos. Sci. 45(10), 1533–1541 (1988)

    Article  ADS  Google Scholar 

  7. D.R. Christie, Long nonlinear waves in the lower atmosphere. J. Atmos. Sci. 46(11), 1462–1491 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  8. R.H. Clarke, The morning glory: an atmospheric hydraulic jump. J. Appl. Meteorol. 11(1), 304–311 (1971)

    Google Scholar 

  9. S.R. Osborne, A. Lapworth, Initiation and propagation of an atmospheric bore in a numerical forecast model: a comparison with observations. J. Appl. Meteorol. Climatol. 56(11), 2999–3016 (2017)

    Article  ADS  Google Scholar 

  10. T.W. Juliano, T.R. Parish, D.A. Rahn, D.C. Leon, An atmospheric hydraulic jump in the Santa Barbara Channel. J. Appl. Meteorol. Climatol. 56(11), 2981–2998 (2017)

    Article  ADS  Google Scholar 

  11. Q. Zheng, X.-H. Yan, W.T. Liu, V. Klemas, D. Greger, Z. Wang, A solitary wave packet in the atmosphere observed from space. Geophys. Res. Lett. 25(19), 3559–3562 (1998)

    Article  ADS  Google Scholar 

  12. D.C. Fritts, N. Kaifler, B. Kaifler, C. Geach, C.B. Kjellstrand, B.P. Williams, S.D. Eekermann, A.D. Miller, M. Rapp, G. Jones, M. Limon, J. Reimuller, L. Wang, Mesospheric bore evolution and instability dynamics observed in PMC turbo imaging and Rayleigh Lidar profiling over northeastern Canada on 13 July 2018. J. Geophys. Res. Atmosph. 125(14), 1–26 (2020)

    Article  Google Scholar 

  13. R.A. Houze, Jr., Orographic clouds, in Cloud Dynamics, vol. 53 (Academic Press, San Diego, 1993).

    Google Scholar 

  14. S.E. Koch, C. Flamant, J.W. Wilson, B.M. Gentry, B.D. Jamison, An atmospheric soliton observed with Doppler radar, differential absorption lidar, and a molecular Doppler lidar. J. Atmos. Oceanic Tech. 25(8), 1267–1287 (2008)

    Article  ADS  Google Scholar 

  15. D.J. Korteweg, G. de Vries, XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philosoph. Mag. Ser. 5, 39(240), 422–443 (1895)

    Google Scholar 

  16. K.R. Helfrich, W.K. Melville, On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech. 167(1), 285–308 (1986)

    Article  ADS  Google Scholar 

  17. D.J. Brown, D.R. Christie, Fully nonlinear solitary waves in continuously stratified incompressible Boussinesq fluids. Phys. Fluids 10(10), 2569–2586 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Grimshaw, Solitary waves in a compressible fluid. Pure Appl. Geophys. 119(4), 780–797 (1980)

    Article  ADS  Google Scholar 

  19. J.W. Rottman, R. Grimshaw, Atmospheric internal solitary waves. Environ. Stratified Flow, 61–88 (2002)

    Google Scholar 

  20. R.I. Joseph, Solitary waves in a finite depth fluid. J. Phys. A: Gen. Phys. 10(12), 10–13 (1977)

    Article  MathSciNet  Google Scholar 

  21. T. Kubota, D.R.S. Ko, L.D. Dobbs, Weakly-nonlinear, long internal gravity waves in stratified fluids of finite depth. J. Hydronaut. 12(4), 157–165 (1978)

    Article  Google Scholar 

  22. K.K. Tung, D.R.S. Ko, J.J. Chang, Weakly nonlinear internal waves in shear. Stud. Appl. Math. 65(3), 189–221 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  23. R.J. Doviak, S.S. Chen, D.R. Christie, A thunderstorm-generated solitary wave observation compared with theory for nonlinear waves in a sheared atmosphere. Am. Meteorol. Soc. 48(1), 87–111 (1991)

    Google Scholar 

  24. D.L. Wu, J. Gong, M. Ganeshan, GNSS-RO deep refraction signals from moist marine atmospheric boundary layer (MABL). Atmosphere 13(6), 1–31 (2022)

    Article  Google Scholar 

  25. D.K. Ly, C.A. Tan, Q. Ma, Characteristics of Sumatra Squalls and Modelling of the Squall-Generated Waves (Springer Water, 2016), 157–174

    Google Scholar 

Download references

Acknowledgements

This research is funded by Degree by Research BRIN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albertus Sulaiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ripai, A. et al. (2024). On the Atmospheric Solitary Waves Propagation Over Bengkalis Island. In: Lestari, S., et al. Proceedings of the International Conference on Radioscience, Equatorial Atmospheric Science and Environment and Humanosphere Science. INCREASE 2023. Springer Proceedings in Physics, vol 305. Springer, Singapore. https://doi.org/10.1007/978-981-97-0740-9_42

Download citation

Publish with us

Policies and ethics