Skip to main content

Effects of Current Psychotropic Drugs on Inflammation and Immune System

  • Chapter
  • First Online:
Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1411))

Abstract

The immune system and inflammation are involved in the pathological progression of various psychiatric disorders such as depression or major depressive disorder (MDD), generalized anxiety disorder (GAD) or anxiety, schizophrenia, Alzheimer’s disease (AD), and Huntington’s disease. It is observed that levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and other markers are highly increased in the abovementioned disorders. The inflammation and immune component also lead to enhance the oxidative stress. The oxidative stress and increased production of reactive oxygen species (ROS) are considered as important factors that are involved in pathological progression of psychiatric disorders. Increase production of ROS is associated with excessive inflammation followed by cell necrosis and death. The psychotropic drugs are mainly work through modulations of neurotransmitter system. However, it is evident that inflammation and immune modulation are also having important role in the progression of psychiatric disorders. Rationale of the use of current psychotropic drugs is modulation of immune system by them. However, the effects of psychotropic drugs on the immune system and how these might contribute to their efficacy remain largely unclear. The drugs may act through modification of inflammation and related markers. The main purpose of this book chapter is to address the role of current psychotropic drugs on inflammation and immune system. Moreover, it will also address the role of inflammation in the progression of psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 189.00
Price excludes VAT (USA)
Softcover Book
USD 249.99
Price excludes VAT (USA)
Hardcover Book
USD 249.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ghaemi SN. A new nomenclature for psychotropic drugs. J Clin Psychopharmacol. 2015;35(4):428–33.

    Article  CAS  PubMed  Google Scholar 

  2. Valenzuela CF, Puglia MP, Zucca S. Focus on: neurotransmitter systems. Alcohol Res Health. 2011;34(1):106–20.

    PubMed  PubMed Central  Google Scholar 

  3. Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology. 2012;37(1):137–62.

    Article  CAS  PubMed  Google Scholar 

  4. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety. 2013;30(4):297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Westfall S, Pasinetti GM. The gut microbiota links dietary polyphenols with management of psychiatric mood disorders. Front Neurosci. 2019;13:1196.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bennett FC, Molofsky AV. The immune system and psychiatric disease: a basic science perspective. Clin Exp Immunol. 2019;197(3):294–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. WHO Website. https://www.who.int/news-room/fact-sheets/detail/depression. Accessed 10 Oct 2021.

  8. Boku S, Nakagawa S, Toda H, Hishimoto A. Neural basis of major depressive disorder: beyond monoamine hypothesis. Psychiatry Clin Neurosci. 2018;72:3–12.

    Article  CAS  PubMed  Google Scholar 

  9. Heninger GR, Delgado PL, Charney DS. The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry. 1996;29:2–11.

    Article  CAS  PubMed  Google Scholar 

  10. Lener MS, Niciu MJ, Ballard ED, Park M, Park LT, Nugent AC, Zarate CA Jr. Glutamate and gamma-aminobutyric acid Systems in the Pathophysiology of major depression and antidepressant response to ketamine. Biol Psychiatry. 2017;81(10):886–97.

    Article  CAS  PubMed  Google Scholar 

  11. Liu W, Ge T, Leng Y, Pan Z, Fan J, Yang W, Cui R. The role of neural plasticity in depression: from hippocampus to prefrontal cortex. Neural Plast. 2017;2017:6871089.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shadrina M, Bondarenko EA, Slominsky PA. Genetics factors in major depression disease. Front Psych. 2018;9:334.

    Article  Google Scholar 

  13. Michel TM, Pülschen D, Thome J. The role of oxidative stress in depressive disorders. Curr Pharm Des. 2012;18:5890–9.

    Article  CAS  PubMed  Google Scholar 

  14. Raison CL, Miller AH. Is depression an inflammatory disorder? Curr Psychiatry Rep. 2011;13(6):467–75.

    Article  PubMed  PubMed Central  Google Scholar 

  15. https://www.medicalnewstoday.com/articles/anxiety-and-inflammation-is-there-a-link. Accessed 15 Oct 2021.

  16. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS. National Comorbidity Survey Replication. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA. 2003;289(23):3095–105.

    Article  PubMed  Google Scholar 

  17. Carter RM, Wittchen HU, Pfister H, Kessler RC. One-year prevalence of subthreshold and threshold DSM-IV generalized anxiety disorder in a nationally representative sample. Depress Anxiety. 2001;13:78–88.

    Article  CAS  PubMed  Google Scholar 

  18. Ressler KJ, Nemeroff CB. Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety. 2000;12(Suppl 1):2–19.

    Article  PubMed  Google Scholar 

  19. Nuss P. Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat. 2015;11:165–75.

    PubMed  PubMed Central  Google Scholar 

  20. Bhatt S, Devadoss T, Manjula SN, Rajangam J. 5-HT3 receptor antagonism a potential therapeutic approach for the treatment of depression and other disorders. Curr Neuropharmacol. 2021;19(9):1545–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Danese A, Lewis J. Psychoneuroimmunology of early-life stress: the hidden wounds of childhood trauma? Neuropsychopharmacology. 2017;42:99–114.

    Article  CAS  PubMed  Google Scholar 

  22. Salim S, Chugh G, Asghar M. Inflammation in anxiety. Adv Protein Chem Struct Biol. 2012;88:1–25.

    Article  CAS  PubMed  Google Scholar 

  23. Bandelow B, Michaelis S, Wedekind D. Treatment of anxiety disorders. Dialogues Clin Neurosci. 2017;19(2):93–107.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Locke AB, Kirst N, Shultz CG. Diagnosis and management of generalized anxiety disorder and panic disorder in adults. Am Fam Physician. 2015;91(9):617–24.

    PubMed  Google Scholar 

  25. Jakubovski E, Johnson JA, Nasir M, Müller-Vahl K, Bloch MH. Systematic review and meta-analysis: dose-response curve of SSRIs and SNRIs in anxiety disorders. Depress Anxiety. 2019;36(3):198–212.

    Article  PubMed  Google Scholar 

  26. Alzheimer A. Ueber einen eigenartigen schweren Erkrankungsprozess der Hirnrinde. Neurol Central. 1906;25:1134.

    Google Scholar 

  27. Probst A, Langui D, Ulrich J. Alzheimer's disease: a description of the structural lesions. Brain Pathol. 1991;1(4):229–39.

    Article  CAS  PubMed  Google Scholar 

  28. Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

    Article  CAS  PubMed  Google Scholar 

  30. Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014;14:463–77.

    Article  CAS  PubMed  Google Scholar 

  31. Shariati SA, De SB. Redundancy and divergence in the amyloid precursor protein family. FEBS Lett. 2013;587(13):2036–45.

    Article  CAS  PubMed  Google Scholar 

  32. Delgado A, Cholevas C, Theoharides TC. Neuroinflammation in Alzheimer's disease and beneficial action of luteolin. Biofactors. 2021;47(2):207–17.

    Article  CAS  PubMed  Google Scholar 

  33. Wilkins HM, Swerdlow RH. Amyloid precursor protein processing and bioenergetics. Brain Res Bull. 2017;133:71–9.

    Article  CAS  PubMed  Google Scholar 

  34. Karran E, De SB. The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem. 2016;139(Suppl 2):237–52.

    Article  CAS  PubMed  Google Scholar 

  35. Rocha-Souto B, Scotton TC, Coma M, et al. Brain oligomeric beta-amyloid but not total amyloid plaque burden correlates with neuronal loss and astrocyte inflammatory response in amyloid precursor protein/tau transgenic mice. J Neuropathol Exp Neurol. 2011;70(5):360–76.

    Article  Google Scholar 

  36. Gong CX, Iqbal K. Hyperphosphorylation of microtubule associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem. 2008;15(23):2321–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E. Overexpression of tau protein inhibits kinesindependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J Cell Biol. 1998;143(3):777–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol. 2017;133(5):665–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alonso AD, Grundke-Iqbal I, Barra HS, Iqbal K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci U S A. 1997;94:298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iqbal K, Liu F, Gong C-X, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res. 2010;7:656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Köpke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I. Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem. 1993;268:24374–84.

    Article  PubMed  Google Scholar 

  42. Lippens G, Sillen A, Landrieu I, Amniai L, Sibille N, Barbier P, et al. Tau aggregation in Alzheimer’s disease. Prion. 2007;1:21–5.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Simi G, Babi Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milošević N, et al. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomol Ther. 2016;6, 6

    Google Scholar 

  44. Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–5.

    Article  CAS  PubMed  Google Scholar 

  45. Dickson DW. The pathogenesis of senile plaques. J Neuropathol Exp Neurol. 1997;56(4):321–39.

    Article  CAS  PubMed  Google Scholar 

  46. Selkoe DJ. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature. 1999;399(6738 Suppl):A23–31.

    Article  CAS  PubMed  Google Scholar 

  47. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, et al. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Pathol. 1999;155(3):853–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang J, Dickson DW, Trojanowski JQ, Lee VM. The levels of soluble versus insoluble brain Abeta distinguish Alzheimer's disease from normal and pathologic aging. Exp Neurol. 1999;158(2):328–37.

    Article  CAS  PubMed  Google Scholar 

  49. Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M, et al. Trial of solanezumab for mild dementia due to Alzheimer's disease. N Engl J Med. 2018;378(4):321–30.

    Article  CAS  PubMed  Google Scholar 

  50. Selkoe DJ. Alzheimer disease and aducanumab: adjusting our approach. Nat Rev Neurol. 2019;15(7):365–6.

    Article  PubMed  Google Scholar 

  51. Morris GP, Clark IA, Vissel B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer's disease. Acta Neuropathol Commun. 2014;2:135.

    PubMed  PubMed Central  Google Scholar 

  52. Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16(6):358–72.

    Article  CAS  PubMed  Google Scholar 

  53. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer's disease. Alzheimers Dement (N Y). 2018;4:575–90.

    Article  PubMed  Google Scholar 

  54. Garwood CJ, Pooler AM, Atherton J, Hanger DP, Noble W. Astrocytes are important mediators of ab-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis. 2011;2:e167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci. 2005;25:8843–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kitazawa M, Yamasaki TR, Laferla FM. Microglia as a potential bridge between the amyloid b-peptide and tau. Ann N Y Acad Sci. 2004;1035:85–103.

    Article  CAS  PubMed  Google Scholar 

  57. Aricioglu F, Ozkartal CS, Unal G, Dursun SD. Neuroinflammation in schizophrenia: a critical review and the future. Bull Clin Psychopharmacol. 2016;26(4):329–444.

    Article  Google Scholar 

  58. Meyer U. Anti-inflammatory signaling in schizophrenia. Brain Behav Immun. 2011;25(8):1507–18.

    Article  CAS  PubMed  Google Scholar 

  59. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull. 2009;35:549–62.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Miyamoto S, Duncan GE, Marx CE, Lieberman JA. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry. 2005;10:79–104.

    Article  CAS  PubMed  Google Scholar 

  61. Foussias G, Remington G. Antipsychotics and schizophrenia: from efficacy and effectiveness to clinical decision- making. Can J Psychiatr. 2010;55:117–25.

    Article  Google Scholar 

  62. Altamura AC, Pozzoli S, Fiorentini A, Dell’Osso B. Neurodevelopment and inflammatory patterns in schizophrenia in relation to pathophysiology. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;42(8):63–70.

    Article  CAS  Google Scholar 

  63. Brown AS. Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Dev Neurobiol. 2012;72(10):1272–6.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Meyer U, Feldon J. To poly(I:C) or not to poly(I:C): advancing preclinical schizophrenia research through the use of prenatal immune activation models. Neuropharmacology. 2012;62(3):1308–21.

    Article  CAS  PubMed  Google Scholar 

  65. Hong J, Bang M. Anti-inflammatory strategies for schizophrenia: a review of evidence for therapeutic applications and drug repurposing. Clin Psychopharmacol Neurosci. 2020;18(1):10–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Müller N, Weidinger E, Leitner B, Schwarz MJ. The role of inflammation in schizophrenia. Front Neurosci. 2015;9:372.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry. 2015;2(3):258–70.

    Article  PubMed  PubMed Central  Google Scholar 

  68. https://americanaddictioncenters.org/trauma-stressor-related-disorders. Accessed 15 Oct 2021.

  69. Bhatt S, Mahesh R, Jindal A, Devadoss T. Neuropharmacological and neurochemical evaluation of N-n-propyl-3-ethoxyquinoxaline-2-carboxamide (6n): a novel serotonergic 5-HT3 receptor antagonist for co-morbid antidepressant- and anxiolytic-like potential using traumatic brain injury model in rats. J Basic Clin Physiol Pharmacol. 2017;28(2):93–100.

    Article  CAS  PubMed  Google Scholar 

  70. Ng SY, Lee AYW. Traumatic brain injuries: pathophysiology and potential therapeutic targets. Front Cell Neurosci. 2019;13:528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Beurel E, Toups M, Nemeroff CB. The bidirectional relationship of depression and inflammation: double trouble. Neuron. 2020;107(2):234–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res. 2005;81(3):302–13.

    Article  CAS  PubMed  Google Scholar 

  73. Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci. 2015;38(10):637–58.

    Article  CAS  PubMed  Google Scholar 

  74. Bakunina N, Pariante CM, Zunszain PA. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology. 2015;144(3):365–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ. Brain-derived neurotrophic factor in brain disorders: focus on Neuroinflammation. Mol Neurobiol. 2019;56(5):3295–312.

    Article  CAS  PubMed  Google Scholar 

  76. Wooff Y, Man SM, Aggio-Bruce R, Natoli R, Fernando N. IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative diseases. Front Immunol. 2019;10:1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kopschina Feltes P, Doorduin J, Klein HC, Juárez-Orozco LE, Dierckx RA, Moriguchi-Jeckel CM, de Vries EF. Anti-inflammatory treatment for major depressive disorder: implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J Psychopharmacol. 2017;31(9):1149–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27:24–31.

    Article  CAS  PubMed  Google Scholar 

  79. Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med. 2009;71:171–86.

    Article  CAS  PubMed  Google Scholar 

  80. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.

    Article  CAS  PubMed  Google Scholar 

  81. Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in depression. Drug Discov Today. 2020;25(7):1270–6.

    Article  CAS  PubMed  Google Scholar 

  82. Valkanova V, Ebmeier KP, Allan CL. CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord. 2013;150:736–44.

    Article  CAS  PubMed  Google Scholar 

  83. Allen AP, Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Biological and psychological markers of stress in humans: focus on the Trier social stress test. Neurosci Biobehav Rev. 2014;38:94–124.

    Article  PubMed  Google Scholar 

  84. Slavich GM, Irwin MR. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull. 2014;140:774.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rohleder N. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom Med. 2014;76:181–9.

    Article  PubMed  Google Scholar 

  86. Pace TW, Mletzko TC, Alagbe O, Musselman DL, Nemeroff CB, Miller AH, Heim CM. Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am J Psychiatry. 2006;163(9):1630–3.

    Article  PubMed  Google Scholar 

  87. Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology. 2016;233(9):1637–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Quan N, Banks WA. Brain-immune communication pathways. Brain Behav Immun. 2007;21:727–35.

    Article  CAS  PubMed  Google Scholar 

  89. Sorrells SF, Caso JR, Munhoz CD, Sapolsky RM. The stressed CNS: when glucocorticoids aggravate inflammation. Neuron. 2009;64(1):33–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu YZ, Wang YX, Jiang CL. Inflammation: the common pathway of stress-related diseases. Front Hum Neurosci. 2017;11:316.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hou R, Garner M, Holmes C, Osmond C, Teeling J, Lau L, Baldwin DS. Peripheral inflammatory cytokines and immune balance in generalised anxiety disorder: case-controlled study. Brain Behav Immun. 2017;62:212–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Morales I, Guzmán-Martínez L, Cerda-Troncoso C, Farías GA, Maccioni RB. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci. 2014;8:112.

    Article  PubMed  PubMed Central  Google Scholar 

  93. McNaull BB, Todd S, McGuinness B, Passmore AP. Inflammation and anti-inflammatory strategies for Alzheimer’s disease – a mini-review. Gerontology. 2010;56:3–14.

    Article  CAS  PubMed  Google Scholar 

  94. Bagyinszky E, Van Giau V, Shim K, Suk K, An SSA, Kim S. Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J Neurol Sci. 2017;376:242–54.

    Article  CAS  PubMed  Google Scholar 

  95. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139(Suppl 2):136–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation. 2004;1(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Shastri A, Bonifati DM, Kishore U. Innate immunity and neuroinflammation. Mediators Inflamm. 2013;2013:342931.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ahmad MH, Fatima M, Mondal AC. Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: rational insights for the therapeutic approaches. J Clin Neurosci. 2019;59:6–11.

    Article  CAS  PubMed  Google Scholar 

  99. Agostinho P, Cunha RA, Oliveira C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des. 2010;16:2766–78.

    Article  CAS  PubMed  Google Scholar 

  100. Avila-Muñoz E, Arias C. When astrocytes become harmful: functional and inflammatory responses that contribute to Alzheimer’s disease. Ageing Res Rev. 2014;18:29–40.

    Article  PubMed  Google Scholar 

  101. Chen CH, Zhou W, Liu S, Deng Y, Cai F, Tone M, et al. Increased NF-kappa B signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer's disease. Int J Neuropsychopharmacol. 2012;15(1):77–90.

    Article  CAS  PubMed  Google Scholar 

  102. Webers A, Heneka MT, Gleeson PA. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer's disease. Immunol Cell Biol. 2020;98(1):28–41.

    Article  PubMed  Google Scholar 

  103. Lee JW, Lee YK, Yuk DY, et al. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation. 2008;5:37.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Heneka MT. Inflammasome activation and innate immunity in Alzheimer’s disease. Brain Pathol. 2017;27:220–2.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ye L, Huang Y, Zhao L, et al. IL-1β and TNF-α induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem. 2013;125:897–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fillit H, Ding WH, Buee L, Kalman J, Altstiel L, Lawlor B, et al. Elevated circulating tumor necrosis factor levels in Alzheimer's disease. Neurosci Lett. 1991;129(2):318–20.

    Article  CAS  PubMed  Google Scholar 

  107. Strauss S, Bauer J, Ganter U, Jonas U, Berger M, Volk B. Detection of interleukin-6 and alpha 2-macroglobulin immunoreactivity in cortex and hippocampus of Alzheimer's disease patients. Lab Investig. 1992;66(2):223–30.

    CAS  PubMed  Google Scholar 

  108. Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989;86(19):7611–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Grammas P, Ovase R. Inflammatory factors are elevated in brain microvessels in Alzheimer's disease. Neurobiol Aging. 2001;22(6):837–42.

    Article  CAS  PubMed  Google Scholar 

  110. Rogers J, Luber-Narod J, Styren SD, Civin WH. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease. Neurobiol Aging. 1988;9(4):339–49.

    Article  CAS  PubMed  Google Scholar 

  111. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70:663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bolu A, Aydın MS, Akgün A, Coşkun A, Garip B, Öznur T, et al. Serum levels of high sensitivity c-reactive protein in drug-naïve first-episode psychosis and acute exacerbation of schizophrenia. Clin Psychopharmacol Neurosci. 2019;17:244–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M, et al. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;42:115–21.

    Article  CAS  Google Scholar 

  114. Furukawa H, Del Rey A, Monge-Arditi G, Besedovsky HO. Interleukin-1, but not stress, stimulates glucocorticoid output during early postnatal life in mice. Ann N Y Acad Sci. 1998;840:117–22.

    Article  CAS  PubMed  Google Scholar 

  115. Nair A, Bonneau RH. Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. J Neuroimmunol. 2006;171:72–85.

    Article  CAS  PubMed  Google Scholar 

  116. Sparkman NL, Johnson RW. Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress. Neuroimmunomodulation. 2008;15:323–30.

    Article  CAS  PubMed  Google Scholar 

  117. Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF. Microglia serve as a neuroimmune substrate for stress-inducedpotentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun. 2007;21:47–59.

    Article  CAS  PubMed  Google Scholar 

  118. Zhou D, Kusnecov AW, Shurin MR, DePaoli M, Rabin BS. Exposure to physical and psychological stressors elevates plasma interleukin 6: relationship to the activation of hypothalamic pituitary-adrenal axis. Endocrinology. 1993;133:2523–30.

    Article  CAS  PubMed  Google Scholar 

  119. Howes OD, McCutcheon R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry. 2017;7:e1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zalcman S, Murray L, Dyck DG, Greenberg AH, Nance DM. Interleukin-2 and -6 induce behavioral-activating effects in mice. Brain Res. 1998;811:111–21.

    Article  CAS  PubMed  Google Scholar 

  121. Zalcman S, Savina I, Wise RA. Interleukin-6 increases sensitivity to the locomotor-stimulating effects of amphetamine in rats. Brain Res. 1999;847:276–83.

    Article  CAS  PubMed  Google Scholar 

  122. Behrens MM, Ali SS, Dugan LL. Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci. 2008;28:13957–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76:77–98.

    Article  CAS  PubMed  Google Scholar 

  124. Parrott JM, O'Connor JC. Kynurenine 3-monooxygenase: an influential mediator of neuropathology. Front Psych. 2015;6:116.

    Google Scholar 

  125. Stone TW, Darlington LG. Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov. 2002;1:609–20.

    Article  CAS  PubMed  Google Scholar 

  126. Iaccarino HF, Suckow RF, Xie S, Bucci DJ. The effect of transient increases in kynurenic acid and quinolinic acid levels early in life on behavior in adulthood: implications for schizophrenia. Schizophr Res. 2013;150:392–7.

    Article  PubMed  Google Scholar 

  127. Larsson MK, Faka A, Bhat M, Imbeault S, Goiny M, Orhan F, et al. Repeated LPS injection induces distinct changes in the kynurenine pathway in mice. Neurochem Res. 2016;41:2243–55.

    Article  CAS  PubMed  Google Scholar 

  128. Pérez-Neri I, Ramírez-Bermúdez J, Montes S, Ríos C. Possible mechanisms of neurodegeneration in schizophrenia. Neurochem Res. 2006;31:1279–94.

    Article  PubMed  Google Scholar 

  129. Trépanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP. Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry. 2016;21:1009–26.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Van Kesteren CF, Gremmels H, de Witte LD, Hol EM, Van Gool AR, Falkai PG, et al. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry. 2017;7:e1075.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC. Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med. 2009;50:1801–7.

    Article  PubMed  Google Scholar 

  132. Van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, et al. Microglia activation in recent- onset schizophrenia: a quantitative (R)-[11C]PK1195positron emission tomography study. Biol Psychiatry. 2008;64:820–2.

    Article  PubMed  Google Scholar 

  133. Bloomfield PS, Selvaraj S, Veronese M, Rizzo G, Bertoldo A, Owen DR, et al. Microglial activity in people at ultra-highrisk of psychosis and in schizophrenia: an [(11)C]PBR28 PET brain imaging study. Am J Psychiatry. 2016;173:44–52.

    Article  PubMed  Google Scholar 

  134. Kim YK, Myint AM, Lee BH, Han CS, Lee HJ, Kim DJ, et al. Th1, Th2 and Th3 cytokine alteration in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2004;28(7):1129–34.

    Article  CAS  Google Scholar 

  135. Martínez-Gras I, García-Sánchez F, Guaza C, Rodríguez-Jiménez R, Andrés-Esteban E, Palomo T, et al. Altered immune function in unaffected first-degree biological relatives of schizophrenia patients. Psychiatry Res. 2012;200(2–3):1022–5.

    Article  PubMed  Google Scholar 

  136. Meyer U, Schwarz MJ, Müller N. Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacol Ther. 2011;132(1):96–110.

    Article  CAS  PubMed  Google Scholar 

  137. Müller N, Wagner JK, Krause D, Weidinger E, Wildenauer A, Obermeier M, et al. Impaired monocyte activation inschizophrenia. Psychiatry Res. 2012;198(3):341–6.

    Article  PubMed  Google Scholar 

  138. Rothermundt M, Ahn JN, Jörgens S. S100B in schizophrenia: an update. Gen Physiol Biophys. 2009;28:76–81.

    Google Scholar 

  139. De Witte L, Tomasik J, Schwarz E, Guest PC, Rahmoune H, Kahn RS, et al. Cytokine alterations in first-episode schizophrenia patients before and after antipsychotic treatment. Schizophr Res. 2014;154(1–3):23–9.

    Article  PubMed  Google Scholar 

  140. Maes M, Meltzer HY, Bosmans E. Immune-inflammatory markers in schizophrenia: comparison to normal controls and effects of clozapine. Acta Psychiatr Scand. 1994;89(5):346–51.

    Article  CAS  PubMed  Google Scholar 

  141. Müller N, Bechter K. The mild encephalitis concept for psychiatric disorders revisited in the light of current psychoneuroimmunological findings. Neurol Psychiatry Brain Res. 2013;19(3):87–101.

    Article  Google Scholar 

  142. Dantzer R. Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol. 2004;1(500):399–411.

    Article  Google Scholar 

  143. Layé S, Gheusi G, Cremona S, Combe C, Kelley K, Dantzer R, et al. Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression. Am J Physiol Regul Integr Comp Physiol. 2000;279(1):93–8.

    Article  Google Scholar 

  144. Lotocki G, de Rivero Vaccari JP, Perez ER, Sanchez-Molano J, Furones-Alonso O, Bramlett HM, Dietrich WD. Alterations in blood-brain barrier permeability to large and small molecules and leukocyte accumulation after traumatic brain injury: effects of post-traumatic hypothermia. J Neurotrauma. 2009;26(7):1123–34.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Goodman JC, Van M, Gopinath SP, Robertson CS. Pro-inflammatory and pro-apoptotic elements of the neuroinflammatory response are activated in traumatic brain injury. Acta Neurochir Suppl. 2009;102:437–9.

    Article  Google Scholar 

  146. Frugier T, Morganti-Kossmann MC, O’Reilly D, Mclean CA. In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J Neurotrauma. 2009;27:497–507.

    Article  Google Scholar 

  147. Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2−/− mice. J Cereb Blood Flow Metab. 2010;30:769–82.

    Article  PubMed  Google Scholar 

  148. Buttram SD, Wisniewski SR, Jackson EK, Adelson PD, Feldman K, Bayir H, Berger RP, Clark RS, Kochanek PM. Multiplex assessment of cytokine and chemokine levels in cerebrospinal fluid following severe pediatric traumatic brain injury: effects of moderate hypothermia. J Neurotrauma. 2007;24(11):1707–17.

    Article  PubMed  Google Scholar 

  149. Rancan M, Otto VI, Hans VH, Gerlach I, Jork R, Trentz O, et al. Upregulation of ICAM-1 and MCP-1 but not of MIP-2 and sensorimotor deficit in response to traumatic axonal injury in rats. J Neurosci Res. 2001;63:438–46.

    Article  CAS  PubMed  Google Scholar 

  150. Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013;136:28–42.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Baumeister D, Ciufolini S, Mondelli V. Effects of psychotropic drugs on inflammation: consequence or mediator of therapeutic effects in psychiatric treatment? Psychopharmacology. 2016;233(9):1575–89.

    Article  CAS  PubMed  Google Scholar 

  152. Hashioka S, McGeer PL, Monji A, Kanba S. Anti-inflammatory effects of antidepressants: possibilities for preventives against Alzheimer's disease. Cent Nerv Syst Agents Med Chem. 2009;9(1):12–9.

    Article  CAS  PubMed  Google Scholar 

  153. Hannestad J, DellaGioia N, Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology. 2011;36:2452–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Arteaga-Henríquez G, Simon MS, Burger B, Weidinger E, Wijkhuijs A, Arolt V, Birkenhager TK, Musil R, Müller N, Drexhage HA. Low-grade inflammation as a predictor of antidepressant and anti-inflammatory therapy response in MDD patients: a systematic review of the literature in combination with an analysis of experimental data collected in the EU-MOODINFLAME consortium. Front Psychiatry. 2019;10:458.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ohgi Y, Futamura T, Kikuchi T, Hashimoto K. Effects of antidepressants on alternations in serum cytokines and depressive-like behavior in mice after lipopolysaccharide administration. Pharmacol Biochem Behav. 2013;103(4):853–9.

    Article  CAS  PubMed  Google Scholar 

  156. Bhatt S, Mahesh R, Devadoss T, Jindal A. Neuropharmacological evaluation of a novel 5-HT3 receptor antagonist (4-benzylpiperazin-1-yl)(3-methoxyquinoxalin-2-yl) methanone (6g) on lipopolysaccharide-induced anxiety models in mice. J Basic Clin Physiol Pharmacol. 2017;28(2):101–6.

    Article  CAS  PubMed  Google Scholar 

  157. Sacre S, Jaxa-Chamiec A, Low CMR, Chamberlain G, Tralau-Stewart C. Structural modification of the antidepressant Mianserin suggests that its anti-inflammatory activity may be independent of 5-Hydroxytryptamine receptors. Front Immunol. 2019;10:1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Groen RN, Ryan O, Wigman JTW, Riese H, Penninx BWJH, Giltay EJ, Wichers M, Hartman CA. Comorbidity between depression and anxiety: assessing the role of bridge mental states in dynamic psychological networks. BMC Med. 2020;18(1):308.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Murrough JW, Yaqubi S, Sayed S, Charney DS. Emerging drugs for the treatment of anxiety. Expert Opin Emerg Drugs. 2015;20(3):393–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Taché Y, Martinez V, Wang L, Million M. CRF1 receptor signaling pathways are involved in stress-related alterations of colonic function and viscerosensitivity: implications for irritable bowel syndrome. Br J Pharmacol. 2004;141(8):1321–30.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Bhatt S, Puli L, Patil CR. Role of reactive oxygen species in the progression of Alzheimer's disease. Drug Discov Today. 2021;26(3):794–803.

    Article  CAS  PubMed  Google Scholar 

  163. Weiner HL, Selkoe DJ. Inflammation and therapeutic vaccination in CNS diseases. Nature. 2002;420:879–84.

    Article  CAS  PubMed  Google Scholar 

  164. DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM. Peripheral anti-a beta antibody alters CNS and plasma a beta clearance and decreases brain a beta burden in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A. 2001;98:8850–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Frenkel D, Katz O, Solomon B. Immunization against Alzheimer's beta -amyloid plaques via EFRH phage administration. Proc Natl Acad Sci U S A. 2000;97:11455–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000;6:916–9.

    Article  CAS  PubMed  Google Scholar 

  167. Patton RL, Kalback WM, Esh CL, Kokjohn TA, Van Vickle GD, Luehrs DC, Kuo YM, Lopez J, Brune D, Ferrer I, Masliah E, Newel AJ, Beach TG, Castano EM, Roher AE. Amyloid-beta peptide remnants in AN-1792-immunized Alzheimer's disease patients a biochemical analysis. Am J Pathol. 2006;169:1048–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hudson BI, Schmidt AM. RAGE a novel target for drug intervention in diabetic vascular disease. Pharm Res. 2004;21:1079–86.

    Article  CAS  PubMed  Google Scholar 

  169. Walker D, Lue LF. Anti-inflammatory and immune therapy for Alzheimer's disease: current status and future directions. Curr Neuropharmacol. 2007;5(4):232–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Drzyzga L, Obuchowicz E, Marcinowska A, Herman ZS. Cytokines in schizophrenia and the effects of antipsychotic drugs. Brain Behav Immun. 2006;20:532–45.

    Article  CAS  PubMed  Google Scholar 

  171. Karanikas EP. Psycho-immunological mechanisms in schizophrenia. Psychiatrike. 2011;22:43–52.

    CAS  PubMed  Google Scholar 

  172. Al-Amin MM, Nasir Uddin MM, Mahmud Reza H. Effects of antipsychotics on the inflammatory response system of patients with schizophrenia in peripheral blood mononuclear cell cultures. Clin Psychopharmacol Neurosci. 2013;11(3):144–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Pandurangi AK, Buckley PF. Inflammation, antipsychotic drugs, and evidence for effectiveness of anti-inflammatory agents in schizophrenia. Curr Top Behav Neurosci. 2020;44:227–44.

    Article  CAS  PubMed  Google Scholar 

  174. Giridharan VV, Scaini G, Colpo GD, Doifode T, Pinjari OF, Teixeira AL, Petronilho F, Macêdo D, Quevedo J, Barichello T. Clozapine prevents poly (I:C) induced inflammation by modulating NLRP3 pathway in microglial cells. Cells. 2020;9(3):577.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatt, S., Dhar, A.K., Samanta, M.K., Suttee, A. (2023). Effects of Current Psychotropic Drugs on Inflammation and Immune System. In: Kim, YK. (eds) Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders. Advances in Experimental Medicine and Biology, vol 1411. Springer, Singapore. https://doi.org/10.1007/978-981-19-7376-5_18

Download citation

Publish with us

Policies and ethics