Skip to main content

Measurements of Radioactive 60Fe and 244Pu Deposits on Earth and Moon

  • Living reference work entry
  • First Online:
Handbook of Nuclear Physics
  • 76 Accesses

Abstract

Earth is exposed to nearby cosmic events. The solar system moves through the interstellar medium and collects interstellar dust particles that contain unique signatures of ongoing nucleosynthesis in nearby supernovae or rare cosmic explosions. Such particles may accumulate over million years in deep-ocean archives and in lunar soil, imprinting isotopic fingerprints of specific interstellar radionuclides in the geological record. The most prominent radionuclides are 60Fe (t1/2 = 2.6 Myr) and 244Pu (81 Myr). Both do not exist naturally on Earth. They can be measured with high sensitivity via accelerator mass spectrometry (AMS). Indeed, both nuclides have been found on Earth and 60Fe also on the Moon.

AMS measurements of 60Fe from terrestrial and lunar archives demonstrate a clear exposure of Earth to recent (<10 Myr) cosmic explosions, suggesting close-by supernova activity ∼2–3 and ∼7 million years ago. In addition, recent detection of interstellar 244Pu, exclusively produced by the rapid neutron capture (r-)process, allows to link supernovae and r-process. This latter process is far from being fully understood. Interstellar 244Pu can place constraints on r-process frequency and production yields over the last few 100 Myr. The measured 244Pu influx was found lower than expected if supernovae dominate r-process nucleosynthesis, implying contributions from additional sources.

In this chapter, the journey of such radionuclides is followed, after their production in massive stars or compact objects, from the interstellar medium to their incorporation in geological archives, resulting finally in the detection of a few atoms via direct atom counting. These experimental results provide unique insights into recent and nearby nucleosynthesis events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • H.A. Abt, The age of the Local Interstellar Bubble. Astron. J. 141, 165 (2011)

    Article  ADS  Google Scholar 

  • S.M. Adams, C.S. Kochanek, J.F. Beacom, M.R. Vagins, K.Z. Stanek, Observing the next Galactic supernova. Astron. J. 778, 164 (2013)

    Article  Google Scholar 

  • E. Allison, M.T. Ledbetter, Timing of bottom-water scour recorded by sedimentological parameters in the South Australian Basin. Mar. Geol. 46, 131–147 (1982)

    Article  ADS  Google Scholar 

  • R.A. Alpher, H. Bethe, G. Gamow, The origin of chemical elements. Phys. Rev. 73, 803 (1948)

    Article  ADS  Google Scholar 

  • N. Altobelli et al., Cassini between Venus and Earth: detection of interstellar dust. J. Geophys. Res. 108, 8032 (2003)

    Google Scholar 

  • N. Altobelli et al., Interstellar dust flux measurements by the Galileo dust instrument between the orbits of Venus and Mars. J. Geophys. 110, A07102 (2005)

    Article  ADS  Google Scholar 

  • L.W. Alvarez et al., Extraterrestrial cause for the cretaceous-tertiary extinction. Science 208, 1095 (1980)

    Article  ADS  Google Scholar 

  • M. Arnould, S. Goriely, K. Takahashi, The r-process of stellar nucleosynthesis: astrophysics and nuclear physics achievements and mysteries. Phys. Rep. 450, 97–213 (2007)

    Article  ADS  Google Scholar 

  • T. Athanassiadou, B.D. Fields, Penetration of nearby supernova dust in the inner solar system. New Astron. 16, 229 (2011)

    Article  ADS  Google Scholar 

  • N. Benítez, J. Maíz-Apellániz, M. Canelles, Evidence for nearby supernova explosions. Phys. Rev. Lett. 88, 081101 (2002)

    Article  ADS  Google Scholar 

  • T.W. Berghöfer, D. Breitschwerdt, The origin of the young stellar population in the solar neighborhood – a link to the formation of the Local Bubble? Astron. Astrophys. 390, 299 (2002)

    Article  ADS  Google Scholar 

  • W.R. Binns, M.H. Israel, E.R. Christian, et al., Observation of the 60Fe nucleosynthesis-clock isotope in Galactic cosmic rays. Science 352, 677 (2016)

    Article  ADS  Google Scholar 

  • D. Breitschwerdt, J. Feige, M.M. Schulreich, M.A. de Avillez, C. Dettbarn, B. Fuchs, The locations of recent supernovae near the Sun from modelling 60Fe transport. Nature 532, 73 (2016)

    Article  ADS  Google Scholar 

  • E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957)

    Article  ADS  Google Scholar 

  • A.G.W. Cameron, Nuclear reaction in stars and nucleogenesis. Publ. Astron. Soc. Pacific 69 (408) 201–222 (1957)

    Google Scholar 

  • Chaikin, E., et al. Simulations of 60Fe entrained in ejecta from a near-Earth supernova: effects of observer motion. Mon. Not. R. Astron. Soc. 512(1), 712–727 (2022)

    Article  ADS  Google Scholar 

  • J. Chmeleff, F. von Blanckenburg, K. Kossert, D. Jakob, Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. B 268, 192–199 (2010)

    Article  ADS  Google Scholar 

  • D.D. Clayton, Principles of Stellar Evolution and Nucleosynthesis (McGraw-Hill, New York, 1968)

    Google Scholar 

  • D.D. Clayton, The role of radioactive isotopes in astrophysics. Lect. Notes Phys. 812, 25–79 (2011)

    Article  ADS  Google Scholar 

  • B. Cote et al., 129I and 247Cm in meteorites constrain the last astrophysical source of solar r-process elements. Science 371, 945 (2021)

    Google Scholar 

  • J.J. Cowan, C. Sneden, J.E. Lawler, A. Aprahamian, M. Wiescher, K. Langanke, G. Martínez-Pinedo, F.-K. Thielemann, Making the heaviest elements in the Universe: a review of the rapid neutron capture process. Rev. Mod. Phys. 91, 015002 (2020)

    Google Scholar 

  • D.P. Cox, P.R. Anderson, Extended adiabatic blast waves and a model of the soft X-ray background. Astrophys. J. 253, 268 (1982)

    Article  ADS  Google Scholar 

  • N. Dauphas, The U/Th production ratio and the age of the Milky Way from meteorites and Galactic halo stars. Nature 435, 1203–1205 (2005)

    Article  ADS  Google Scholar 

  • N. Dauphas, M. Chaussidon, A perspective from extinct radionuclides on a Young Stellar Object: The Sun and its accretion disk. Annu. Rev. Earth Planet. Sci. 39, 351–386 (2011)

    Google Scholar 

  • M. Dee, B. Pope, D. Miles, S. Manning, F. Miyake, Supernovae and single-year anomalies in the atmospheric radiocarbon record. Radiocarbon 59(2), 293–302 (2017)

    Article  Google Scholar 

  • R. Diehl et al., Radioactive 26Al from massive stars in the galaxy. Nature 439, 45–47 (2006)

    Google Scholar 

  • R. Diehl, Nuclear astrophysics lessons from INTEGRAL. Rep. Prog. Phys. 76, 026301 (2013)

    Article  ADS  Google Scholar 

  • R. Diehl et al., INTEGRAL/SPI γ-ray line spectroscopy. Astron. Astrophys. 611, A12 (2018). https://doi.org/10.1051/0004-6361/201731815

    Article  Google Scholar 

  • R. Diehl et al., The radioactive nuclei 26Al and 60Fe in the Cosmos and in the solar system. Publ. Astron. Soc. Aust. 38, e062, 1–42 (2021). https://doi.org/10.1017/pasa.2021.48

    Article  ADS  Google Scholar 

  • R. Diehl et al., Cosmic nucleosynthesis: a multi-messenger challenge. Prog. Part. Nucl. Phys. 127, 103983 (2022). https://doi.org/10.1016/j.ppnp.2022.103983

    Article  Google Scholar 

  • R. Diehl, H. Halloin, K. Kretschmer, G.G. Lichti, V. Schönfelder, A.W. Strong, A. Von Kienlin, W. Wang, P. Jean, J. Knödlseder, J.-P. Roques, G. Weidenspointner, S. Schanne, D.H. Hartmann, C. Winkler, C. Wunderer, Radioactive 26Al from massive stars in the galaxy. Nature 439, 45–47 (2006)

    Google Scholar 

  • C.L. Doherty, P. Gil-Pons, H.H.B. Lau, J.C. Lattanzio, L. Siess, Super and massive AGB stars – II. Nucleosynthesis and yields – Z = 0.02, 0.008 and 0.004. Mon. Not. R. Astron. Soc. 437, 195–214 (2014a)

    Article  ADS  Google Scholar 

  • C.L. Doherty, P. Gil-Pons, H.H.B. Lau, J.C. Lattanzio, L. Siess, S.W. Campbell, Super and massive AGB stars – III. Nucleosynthesis in metal-poor and very metal-poor stars – Z = 0.001 and 0.0001. Mon. Not. R. Astron. Soc. 441, 582 (2014b)

    Article  ADS  Google Scholar 

  • J. Donelly et al., Actinide and ultra-heavy abundances in the local Galactic cosmic rays: an analysis of the results from the LDEF Ultra-Heavy Cosmic Ray Experiment. Astrophys. J. 747, 40 (2012)

    Article  ADS  Google Scholar 

  • J. Ellis, D. Schramm, Could a nearby supernova explosion have caused a mass extinction? Proc. Natl. Acad. Sci. U. S. A 92, 235–238 (1995)

    Article  ADS  Google Scholar 

  • J. Ellis, B.D. Fields, D.N. Schramm, Geological isotope anomalies as signatures of nearby supernovae. Astrophys. J. 470, 1227 (1996)

    Article  ADS  Google Scholar 

  • J. Feige et al., Limits on 60Fe/26Al nucleosynthesis ratios from deep-sea sediment AMS measurements. Phys. Rev. Lett. 121, 221103 (2018)

    Article  ADS  Google Scholar 

  • P.R. Fields, H. Diamond, D.N. Metta, C.M. Stevens, D.J. Rokop, P.E. Moreland, Isotopic abundances of actinide elements in lunar material. Science 167, 499–501 (1970)

    Article  ADS  Google Scholar 

  • P.R. Fields, A.M. Friedman, J. Milsted, J. Lerner, C.M. Stevens, D. Metta, W.K. Sabine, Decay properties of plutonium-244, and comments on its existence in nature. Nature 212, 131 (1966)

    Google Scholar 

  • B.D. Fields, K.A. Hochmuth, J. Ellis, Deep-ocean crusts as telescopes: using live radioisotopes to probe supernova nucleosynthesis. Astrophys. J. 621, 902–907 (2005)

    Article  ADS  Google Scholar 

  • B.D. Fields, T. Athanassiadou, S.R. Johnson, Supernova collisions with the heliosphere. Astrophys. J. 678, 549 (2008)

    Article  ADS  Google Scholar 

  • B.D. Fields et al., Supernova triggers for end-Devonian extinctions. Proc. Natl. Acad. Sci. U. S. A 117, 21008 (2020)

    Article  ADS  Google Scholar 

  • L. Fimiani et al., Interstellar 60Fe on the surface of the Moon. Phys. Rev. Lett. 116, 151104 (2016)

    Article  ADS  Google Scholar 

  • C. Fitoussi et al., Search for supernova-produced 60Fe in a marine sediment. Phys. Rev. Lett. 101, 121101 (2008)

    Article  ADS  Google Scholar 

  • O. Forstner, H. Gnaser, R. Golser, D. Hanstorp, M. Martschini, A. Priller, J. Rohlén, P. Steier, C. Vockenhuber, A. Wallner, Reassessment of 182Hf AMS measurements at VERA. Nucl. Instrum. Methods Phys. Res. B 269, 3180 (2011)

    Article  ADS  Google Scholar 

  • P.C. Frisch, The nearby interstellar medium. Nature 293, 377 (1981)

    Article  ADS  Google Scholar 

  • P. Frisch, V.V. Dwarkadas, Effect of supernovae on the local interstellar material, in Handbook of supernovae, ed. by A.W. Alsabti, P. Murdin, (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-20794-0_13-1

    Chapter  Google Scholar 

  • P. Frisch, D.G. York, The Galaxy and the Solar System (University of Arizona Press, Tucson, 1986), pp. 83–100

    Google Scholar 

  • P.C. Frisch et al., The Galactic environment of the Sun: interstellar material inside and outside of the heliosphere. Space Sci. Rev. 146, 235–273 (2009)

    Article  ADS  Google Scholar 

  • B.J. Fry, B.D. Fields, J.R. Ellis, Astrophysical shrapnel: discriminating among near-Earth stellar explosion sources of live radioactive isotopes. ApJ. 800, 71 (2015)

    Google Scholar 

  • B.J. Fry, B.D. Fields, J.R. Ellis, Radioactive iron rain: transporting 60Fe in supernova dust to the ocean floor. ApJ. 827, 48 (2016)

    Google Scholar 

  • B.J. Fry, B.D. Fields, J.R. Ellis, Magnetic imprisonment of dusty pinballs by a supernova remnant. Astrophys. J. 894, 109 (2020)

    Google Scholar 

  • B. Fuchs, D. Breitschwerdt, M.A. de Avillez, C. Dettbarn, C. Flynn, The search for the origin of the Local Bubble redivivus. Mon. Not. R. Astron. Soc. 373, 993–1003 (2006)

    Article  ADS  Google Scholar 

  • C. Gall et al., Rapid formation of large dust grains in the luminous supernova 2010jl. Nature 511, 326–329 (2014)

    Article  ADS  Google Scholar 

  • N. Gehrels et al., Ozone depletion from nearby supernovae. Astrophys. J. 585, 1169–1176 (2003)

    Article  ADS  Google Scholar 

  • S. Goriely, H.-T. Janka, Solar r-process-constrained actinide production in neutrino-driven winds of supernovae. Mon. Not. R. Astron. Soc. 459, 4174–4182 (2016)

    Article  ADS  Google Scholar 

  • E. Gruen et al., Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature 362, 428 (1993)

    Article  ADS  Google Scholar 

  • G. Gyürky, Z. Fülöp, F. Käppeler, G.G. Kiss, A. Wallner, The activation method for cross section measurements in nuclear astrophysics. Eur. Phys. J. A 55, 1–31 (2019)

    Article  ADS  Google Scholar 

  • J.R. Hein, A. Koschinsky, Deep-ocean ferromanganese crusts and nodules, in Treatise on geochemistry, ed. by H.D. Holland, K.K. Turekian, 2nd edn., (Elsevier, Amsterdam, 2014), pp. 273–291

    Chapter  Google Scholar 

  • J.R. Hein, A.B.M. Koschinsky, F.T. Manheim, J.-K. Kang, L. Roberts, Cobalt-rich ferromanganese crusts in the Pacific, in Handbook of marine mineral deposits, CRC marine science series, ed. by D.S. Cronan, (CRC Press, Boca Raton, 2000), pp. 239–279

    Google Scholar 

  • D.C. Hoffman, F.O. Lawrence, J.L. Mewherter, F.M. Rouke, Detection of plutonium-244 in nature. Nature 234, 132–134 (1971)

    Article  ADS  Google Scholar 

  • M.A.C. Hotchkis, D.P. Child, M. Froehlich, A. Wallner, K. Wilcken, M. Williams, M., Actinides AMS on the VEGA accelerator. Nucl. Instrum. Methods Phys. Res. B B438, 70–76 (2019)

    Article  ADS  Google Scholar 

  • K. Hotokezaka, T. Piran, M. Paul, Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis. Nat. Phys. 11, 1042 (2015)

    Article  Google Scholar 

  • G.R. Huss et al., Stellar sources of the short-lived radionuclides in the early solar system. Geochim. Cosmochim. Acta 73, 4922–4945 (2009)

    Article  ADS  Google Scholar 

  • A.P. Ji, A. Frebel, A. Chiti, J.D. Simon, R-process enrichment from a single event in an ancient dwarf Galaxy. Nature 531, 610 (2016)

    Article  ADS  Google Scholar 

  • T. Kajino, W. Aoki, A.B. Balantekin, R. Diehl, M.A. Famiano, G.J. Mathews, Current status of r-process nucleosynthesis. Prog. Part. Nucl. Phys. 107, 109 (2019)

    Article  ADS  Google Scholar 

  • A.I. Karakas, Updated stellar yields from asymptotic giant branch models. Mon. Not. R. Astron. Soc. 403, 1413–1425 (2010)

    Article  ADS  Google Scholar 

  • D. Kasen, B. Metzger, J. Barnes, E. Quataert, E. Ramirez-Ruiz, Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551, 80 (2017)

    Article  ADS  Google Scholar 

  • K. Knie et al., Indication for supernova produced 60Fe activity on Earth. Phys. Rev. Lett. 83, 18–21 (1999)

    Article  ADS  Google Scholar 

  • K. Knie et al., 60Fe anomaly in a deep-sea manganese crust and implications for a nearby supernova source. Phys. Rev. Lett. 93, 171103 (2004)

    Google Scholar 

  • D. Koll et al., Recent developments for AMS at the Munich tandem accelerator. Nucl. Instrum. Methods Phys. Res. B 438, 180 (2019a)

    Article  ADS  Google Scholar 

  • D. Koll et al., Interstellar 60Fe in Antarctica. Phys. Rev. Lett. 123, 072701 (2019b)

    Article  ADS  Google Scholar 

  • D. Koll, T. Faestermann, G. Korschinek, I. Leya, S. Merchel, A. Wallner, The dyadic radionuclide system 60Fe/53Mn to distinguish interstellar from interplanetary 60Fe. EPJ Web Conf. 260, 11022 (2022a)

    Article  Google Scholar 

  • D. Koll et al., Element separation chemistry and cosmogenic 10Be dating of a ferromanganese crust. Nucl. Instrum. Methods Phys. Res. B 530, 53 (2022b)

    Article  ADS  Google Scholar 

  • G. Korschinek, T. Faestermann, Long-lived radio-isotopes: Unique signatures of close-by supernovae in the past. Nucl. Instrum. Methods Phys. Res. B 438, 148 (2019)

    Google Scholar 

  • G. Korschinek, T. Faestermann, K. Knie, C. Schmidt, 60Fe, a promising AMS isotope for many applications. Radiocarbon 38, 68 (1996)

    Google Scholar 

  • G. Korschinek et al., A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. B 268, 187–191 (2010)

    Article  ADS  Google Scholar 

  • G. Korschinek, T. Faestermann, M. Poutivtsev, A. Arazi, K. Knie, G. Rugel, A. Wallner, Supernova-produced 53Mn on Earth. Phys. Rev. Lett. 125, 031101 (2020)

    Article  ADS  Google Scholar 

  • M.G.H. Krause, D. Rodgers-Lee, J.E. Dale, R. Diehl, C. Kobayashi, Galactic 26Al traces metal loss through hot chimneys. Mon. Not. R. Astron. Soc. 501, 210–218 (2021)

    Article  ADS  Google Scholar 

  • W. Kutschera, Applications of accelerator mass spectrometry. Int. J. Mass Spectrom. 349–350, 203–218 (2013)

    Article  Google Scholar 

  • W. Kutschera, A.J.T. Jull, M. Paul, A. Wallner, Atom counting with accelerator mass spectrometry. Rev. Mod. Phys. 112, 192501 (2023)

    Google Scholar 

  • J. Lachner, I. Dillmann, T. Faestermann, G. Korschinek, M. Poutivtsev, G. Rugel, C. Liers von Gostomski, A. Türler, U. Gerstmann, Attempt to detect primordial 244Pu on Earth. Phys. Rev. C 85, 015801 (2012)

    Article  ADS  Google Scholar 

  • J. Lachner, M. Martschini, A. Kalb, M. Kern, O. Marchhart, F. Plasser, A. Priller, P. Steier, A. Wieser, R. Golser, Highly sensitive 26Al measurements by Ion-Laser-InterAction Mass Spectrometry. Int. J. Mass Spectrom. 465, 116576 (2021)

    Article  Google Scholar 

  • R. Lallement, R. Ferlet, A.M. Lagrange, M. Lemoine, A. Vidal-Madjar, Local cloud structure from HST-GHRS. Astron. Astrophys. 304, 461 (1995)

    ADS  Google Scholar 

  • J.M. Lattimer, D.N. Schramm, The tidal disruption of neutron stars by black holes in close binaries. Astrophys. J. 210, 549–567 (1976)

    Article  ADS  Google Scholar 

  • H. Lee et al., Distribution and inventories of 90Sr, 137Cs, 241Am and Pu isotopes in sediments of the Northwest Pacific Ocean. Mar. Geol. 216, 249 (2005)

    Article  ADS  Google Scholar 

  • I. Leya et al., 53Mn and 60Fe in iron meteorites – new data, model calculations. Meteorit. Planet. Sci. 55, 818–831 (2020)

    Google Scholar 

  • M. Limongi, A. Chieffi, The nucleosynthesis of 26Al and 60Fe in solar metallicity stars extending in mass from 11 to 120 Mo: the hydrostatic and explosive contributions. Astrophys. J. 647, 483–500 (2006)

    Article  ADS  Google Scholar 

  • Y. Liu, J.R. Beene, C.C. Havener, J.F. Liang, Isobar suppression by photodetachment in a gas-filled RF quadrupole ion guide. Appl. Phys. Lett. 87, 113504 (2005)

    Article  ADS  Google Scholar 

  • S.G. Love, D. Brownlee, Peak atmospheric entry temperatures of micrometeorites. Meteoritics 29, 69–71 (1994)

    Article  ADS  Google Scholar 

  • Z.T. Lu, A Primer on Atom Trap Trace Analysis (ATTA) (2022). Online: https://atta.ustc.edu.cn/en-us/events/attaprimer.html

  • P. Ludwig et al., Time-resolved 2-million-year-old supernova activity discovered in Earth’s microfossil record. Proc. Natl. Acad. Sci. U. S. A 113, 9232 (2016)

    Article  ADS  Google Scholar 

  • M. Lugaro, A.I. Karakas, 26Al and 60Fe yields from AGB stars. New Astron. Rev. 52, 416–418 (2008)

    Google Scholar 

  • M. Lugaro et al., Stellar origin of the 182Hf cosmochronometer and the presolar history of solar system matter. Science 345, 650 (2014)

    Article  ADS  Google Scholar 

  • M. Lugaro, U. Ott, Á. Kereszturi, Radioactive nuclei from cosmochronology to habitability. Prog. Part. Nucl. Phys. 102, 1–47 (2018)

    Article  ADS  Google Scholar 

  • I. Mann, Interstellar dust in the solar system. Annu. Rev. Astron. Astrophys. 48, 173–203 (2010)

    Article  ADS  Google Scholar 

  • M. Martschini, J. Lachner, S. Merchel, A. Priller, P. Steier, A. Wallner, A. Wieser, R. Golser, The quest for AMS of 182Hf – why poor gas gives pure beams. EPJ Web Conf. 232, 02003 (2020)

    Article  Google Scholar 

  • M. Martschini, J. Lachner, K. Hain, M. Kern, O. Marchhart, J. Pitters, A. Priller, P. Steier, A. Wiederin, A. Wieser, R. Golser, 5 years of ion-laser interaction mass spectrometry – status and prospects of isobar suppression in AMS by lasers. Radiocarbon 64, 555–568 (2022)

    Article  Google Scholar 

  • M. Matsuura et al., Herschel detects a massive dust reservoir in supernova 1987A. Science 333, 1258 (2011)

    Article  ADS  Google Scholar 

  • L.R. McHargue, P.E. Damon, D.J. Donahue, Enhanced cosmic-ray production of 10Be coincident with the Mono Lake and Laschamp geomagnetic excursions. Geophys. Res. Lett. 22(5), 659–662 (1995)

    Article  ADS  Google Scholar 

  • A.L. Melott, B.C. Thomas, M. Kachelrieß, D.V. Semikoz, A.C. Overholt, A supernova at 50 pc: effects on the Earth’s atmosphere and biota. Astrophys. J. 840, 105 (2017)

    Article  ADS  Google Scholar 

  • B.S. Meyer, D.D. Clayton, Short-lived radioactivities and the birth of the Sun. Space Sci. Rev. 92, 133–152 (2000)

    Article  ADS  Google Scholar 

  • F. Miyake, K. Nagaya, K. Masuda, T. Nakamura, A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486, 240–242 (2012)

    Article  ADS  Google Scholar 

  • F. Miyake, K. Masuda, T. Nakamura, Another rapid event in the carbon-14 content of tree rings. Nat. Commun. 4, 1748 (2013)

    Article  ADS  Google Scholar 

  • H. Nassar, M. Paul, I. Ahmad, D. Berkovits, M. Bettan, P. Collon, S. Dababneh, S. Ghelberg, J.P. Greene, A. Heger, M. Heil, D.J. Henderson, C.L. Jiang, F. Käppeler, H. Koivisto, S. O’Brien, R.C. Pardo, N. Patronis, T. Pennington, R. Plag, K.E. Rehm, R. Reifarth, R. Scott, S. Sinha, X. Tang, R. Vondrasek, Stellar (n,γ) cross section of 62Ni. Phys. Rev. Lett. 94, 092504 (2005)

    Google Scholar 

  • C.D. Nesaraja, Nuclear data sheets for A = 244. Nucl. Data Sheets 146, 387–510 (2017)

    Article  ADS  Google Scholar 

  • M. Paul, A. Valenta, I. Ahmad, D. Berkovits, C. Bordeanu, S. Ghelberg, Y. Hashimoto, A. Hershkowitz, S. Jiang, T. Nakanishi, K. Sakamoto, Experimental limit to interstellar 244Pu abundance. Astrophys. J. 558(2), L133–L135 (2001)

    Article  ADS  Google Scholar 

  • M. Paul, A. Valenta, I. Ahmad, D. Berkovits, C. Bordeanu, S. Ghelberg, Y. Hashimoto, A. Hershkowitz, S. Jiang, T. Nakanishi, K. Sakamoto, An upper limit to interstellar 244Pu abundance as deduced from radiochemical search in deep-sea sediment: an account. J. Radioanalyt. Nucl. Chem. 272(2), 243 (2007)

    Article  Google Scholar 

  • J. Plane et al., How large is the cosmic dust flux into the Earth’s atmosphere? (2016), https://ui.adsabs.harvard.edu/abs/2016cosp...41E1569P

  • M. Poutivtsev, I. Dillmann, T. Faestermann, K. Knie, G. Korschinek, J. Lachner, A. Meier, G. Rugel, A.Wallner, Highly sensitive AMS measurements of 53Mn, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 756 (2010)

    Google Scholar 

  • Y.-Z. Qian, The origin of the heavy elements: recent progress in the understanding of the r-process. Prog. Part. Nucl. Phys. 50, 153–199 (2003)

    Article  ADS  Google Scholar 

  • G.M. Raisbeck, F. Yiou, J. Jouzel, J. R. Petit, N. I. Barkov, E. Bard, in 10Be deposition at Vostok, Antarctica during the last 50,000 years and its relationship to possible cosmogenic production variations during this period, ed. by E. Bard, W.S. Broecker. The last deglaciation: absolute and radiocarbon chronologies, NATO ASI series, vol 12 (Springer, New York, 1992), pp. 127–139

    Google Scholar 

  • G. Raisbeck et al., A search for supernova produced 244Pu in a marine sediment. Nucl. Instrum. Methods Phys. Rev. B 259, 673–676 (2007)

    Article  ADS  Google Scholar 

  • T. Rauscher, N. Dauphas, I. Dillmann, C. Fröhlich, Z. Fülöp, G. Gyürky, Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data. Rep. Prog. Phys. 76, 066201 (2013)

    Article  ADS  Google Scholar 

  • S. Redfield, J.L. Linsky, The structure of the local interstellar medium. IV. Dynamics, morphology, physical properties, and implications of cloud-cloud interactions. Astrophys. J. 673, 283 (2008)

    Article  ADS  Google Scholar 

  • C.M. Robert (ed.), Global sedimentology of the ocean: an interplay between geodynamics and paleoenvironment, Developments in marine geology, vol 3 (Elsevier, Amsterdam, 2008)

    Google Scholar 

  • K. Rozwadowska, F. Vissani, E. Cappellaro, On the rate of core collapse supernovae in the Milky Way. New Astron. 83, 101498 (2021)

    Article  Google Scholar 

  • M.A. Ruderman, Possible consequences of nearby supernova explosions for atmospheric ozone and terrestrial life. Science 184, 1079–1081 (1974)

    Article  ADS  Google Scholar 

  • G. Rugel et al., New measurement of the 60Fe half-life. Phys. Rev. Lett. 103, 072502 (2009)

    Article  ADS  Google Scholar 

  • M.M. Schulreich, D. Breitschwerdt, J. Feige, C. Dettbarn, Numerical studies on the link between radioisotopic signatures on Earth and the formation of the Local Bubble, I. 60Fe transport to the solar system by turbulent mixing of ejecta from nearby supernovae into a locally homogeneous interstellar medium. Astron. Astrophys. 604, A81 (2017)

    Article  ADS  Google Scholar 

  • M. Segl, A. Mangini, G. Bonani et al., 10Be-dating of a manganese crust from Central North Pacific and implications for ocean palaeocirculation. Nature 309, 540–543 (1984)

    Google Scholar 

  • R.K. Smith, D.P. Cox, Multiple supernova remnant models of the Local Bubble and the soft X-ray background. Astrophys. J. Suppl. Ser. 134, 283 (2001)

    Article  ADS  Google Scholar 

  • H.E. Suess, H.C. Urey, Abundances of the elements. Rev. Mod. Phys. 28, 53 (1956)

    Article  ADS  Google Scholar 

  • H. Svensmark, Evidence of nearby supernovae affecting life on Earth. Mon. Not. R. Astron. Soc. 423, 1234–1253 (2012)

    Article  ADS  Google Scholar 

  • H.-A. Synal, Developments in accelerator mass spectrometry. Int. J. Mass Spectrom. 349–350, 192–202 (2013)

    Article  Google Scholar 

  • G.A. Tammann, W. Loeffler, A. Schroeder, The Galactic supernova rate. Astrophys. J. Suppl. Ser. 92, 487–493 (1994)

    Article  ADS  Google Scholar 

  • L.R. Teal, M.T. Bulling, E.R. Parker, M. Solan, Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquat. Biol. 2, 207–218 (2008)

    Article  Google Scholar 

  • F.K. Thielemann et al., What are the astrophysical sites for the r-process and the production of heavy elements? Prog. Part. Nucl. Phys. 66, 346–353 (2011)

    Article  ADS  Google Scholar 

  • F.-K. Thielemann, M. Eichler, I.V. Panov, B. Wehmeyer, Neutron star mergers and nucleosynthesis of heavy elements. Annu. Rev. Nucl. Part. Sci. 67, 253–274 (2017)

    Article  ADS  Google Scholar 

  • B.C. Thomas, Photobiological effects at Earth’s surface following a 50 pc supernova. Astrobiology 18, 481–490 (2018)

    Article  ADS  Google Scholar 

  • B.C. Thomas et al., Gamma-ray bursts and the Earth: exploration of atmospheric, biological, climatic, and biogeochemical effects. Astrophys. J. 634, 509–533 (2005)

    Article  ADS  Google Scholar 

  • R. Trappitsch, M.R. Savina, J.M. Rolison, L.N. Harrison, N. Dauphas, in Towards the 1000 atom detection limit for 244Pu. 50th Lunar Planet. Sci. Conf. 2019 (LPI contrib. no. 2132) (2019)

    Google Scholar 

  • E. Uberseder et al., Measurement of the 60Fe(n,γ)61Fe cross section at stellar temperatures. Phys. Rev. Lett. 102, 151101 (2009)

    Article  ADS  Google Scholar 

  • C. Vockenhuber, C. Feldstein, M. Paul, N. Trubnikov, M. Bichler, R. Golser, W. Kutschera, A. Priller, P. Steier, S. Winkler, Search for live 182Hf in deep-sea sediments. New Astron. Rev. 48(2004), 161 (2004)

    Article  ADS  Google Scholar 

  • C. Vockenhuber, V. Alfimov, M. Christl, J. Lachner, T. Schulze-König, M. Suter, H.A. Synal, The potential of He stripping in heavy ion AMS. Nucl. Instrum. Methods Phys. Rev. B 294, 382–386 (2013)

    Article  ADS  Google Scholar 

  • G. Wallerstein et al., Synthesis of the elements in stars: forty years of progress. Rev. Mod. Phys. 69, 995–1084 (1997)

    Article  ADS  Google Scholar 

  • A. Wallner, Nuclear astrophysics and AMS – probing nucleosynthesis in the lab. Nucl. Instrum. Methods Phys. Res. B 268, 1277–1282 (2010)

    Article  ADS  Google Scholar 

  • C. Wallner, T. Faestermann, U. Gerstmann, W. Hillebrandt, K. Knie, G. Korschinek, C. Lierse, C. Pomar, G. Rugel, Development of a very sensitive AMS method for the detection of supernova-produced long-lived actinide nuclei in terrestrial archives. Nucl. Instrum. Methods Phys. Rev. B B172, 333–337 (2000)

    Article  ADS  Google Scholar 

  • C. Wallner et al., Supernova produced and anthropogenic 244Pu in deep sea manganese encrustations. New Astron. Rev. 48, 145–150 (2004)

    Article  ADS  Google Scholar 

  • A. Wallner, T. Belgya, M. Bichler, K. Buczak, I. Dillmann, F. Käppeler, C. Lederer, A. Mengoni, F. Quinto, P. Steier, L. Szentmiklosi, Novel method to study neutron capture of 235U and 238U simultaneously at keV energies. Phys. Rev. Lett. 112, 192501 (2014)

    Article  ADS  Google Scholar 

  • A. Wallner et al., Settling the half-life of 60Fe – fundamental for a versatile astrophysical chronometer. Phys. Rev. Lett. 114, 041101 (2015a)

    Article  ADS  Google Scholar 

  • A. Wallner et al., Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis. Nat. Commun. 6, 5956 (2015b)

    Article  ADS  Google Scholar 

  • A. Wallner et al., Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60Fe. Nature 532, 69 (2016)

    Article  ADS  Google Scholar 

  • A. Wallner et al., 60Fe deposition during the late Pleistocene and the Holocene echoes past supernova activity. Proc. Natl. Acad. Sci. U. S. A 117, 21873–21879 (2020)

    Google Scholar 

  • A. Wallner, M.B. Froehlich, M.A.C. Hotchkis, N. Kinoshita, M. Paul, S. Pavetich, N. Kivel, D. Schumann, S.G. Tims, M. Honda, H. Matsuzaki, T. Yamagata, Live 60Fe and 244Pu on Earth reveal multiple nearby supernovae with low r-process yields. Science 372, 742 (2021)

    Article  ADS  Google Scholar 

  • A. Wallner, L.K. Fifield, M.B. Froehlich, D. Koll, G. Leckenby, M. Martschini, S. Pavetich, S.G. Tims, D. Schumann, Z. Slavkovská, Accelerator mass spectrometry with ANU’s 14 million volt accelerator. Nucl. Instrum. Methods Phys. Rev. B 534(7597), 48–53 (2023)

    Google Scholar 

  • S. Wanajo, H.-T. Janka, B. Müller, Electron-capture supernovae as sources of 60Fe. Astrophys. J. Lett. 774, L6 (2013)

    Article  ADS  Google Scholar 

  • W. Wang et al., Gamma-ray emission of 60Fe and 26Al radioactivities in our Galaxy. Astrophys. J. 889, 169 (2020)

    Article  ADS  Google Scholar 

  • G.J. Wasserburg, M. Busso, R. Gallino, K.M. Nollett, Short-lived nuclei in the early solar system: possible AGB sources. Nucl. Phys. A 777, 5–69 (2006)

    Article  ADS  Google Scholar 

  • K. Wendt, The new generation of resonant ionization mass spectrometers: becoming competitive in selective atomic ultra-trace determination? Eur. J. Mass Spectrom. 8, 273–285 (2002)

    Article  Google Scholar 

  • A.J. Westphal et al., Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft. Science 345, 786–791 (2014)

    Article  ADS  Google Scholar 

  • S.E. Woosley, T.A. Weaver, The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. 101, 181–235 (1995)

    Article  ADS  Google Scholar 

  • Y. Wu, X. Dai, S. Xing, M. Luo, M. Christl, H.-A. Synal, S. Hou, Direct search for primordial 244Pu in Bayan Obo bastnaesite. Chin. Chem. Lett. 33, 3522–3526 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Wallner .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wallner, A. (2023). Measurements of Radioactive 60Fe and 244Pu Deposits on Earth and Moon. In: Tanihata, I., Toki, H., Kajino, T. (eds) Handbook of Nuclear Physics . Springer, Singapore. https://doi.org/10.1007/978-981-15-8818-1_94-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8818-1_94-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8818-1

  • Online ISBN: 978-981-15-8818-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics