Skip to main content

Role of Phytomedicine in Alleviating Oxidative Stress-Mediated Vascular Complications in Diabetes

  • Chapter
  • First Online:
Evidence Based Validation of Traditional Medicines

Abstract

Oxidative stress development is inevitably associated with diabetes mellitus. Hyperglycemia triggers excessive free radical generation, frequent oxidation of stable macromolecules, destabilizing conformation of antioxidative enzymes and transcription factors, modulating metabolic pathways, and promoting inflammatory reactions, and ultimately leads to endothelial dysfunctions and vasculopathy. Conventional diabetes management strategies are found inadequate to counter all these associated health issues and often exert many adverse side effects. Phytotherapy in the form of complementary and alternative medicine has raised attention in the treatment of diabetes over the years. Ethnomedicinal knowledge of several plants from traditional literatures have enlighten the path for natural regulation of ailments with safe, economic, and prolonged cure. Extensive pharmacological experiments has also been conducted to affirm the potency of plant-derived active constituents in this regard, and the scientific reports deciphering the underlying mechanism of these molecules in bringing metabolic homeostasis in diabetes is gradually increasing. However, the success rate of developing and marketing of herbal drugs is not satisfactory till date. This book chapter attempts to focus on the detailed pathophysiology of oxidative stress development in diabetes and the important contributions of phytomedicine along with pros and cons in herbal drug development in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Softcover Book
USD 219.99
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AGEs:

Advanced glycation end products

AHP:

American Herbal Pharmacopoeia

AYUSH:

Department of Ayurveda, Yoga & Naturopathy, Unani, Siddha and Homoeopathy

BFAD:

The Bureau of Food and Drugs in the Philippines

BHP:

British Herbal Pharmacopoeia

CAM:

Complementary and Alternative Medicines

CAT:

Catalase

eNOS:

Endothelial nitric oxide synthase

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

HbA1c:

Glycated haemoglobin

HNE:

4-hydroxynonenal

HNF1A:

Hepatocyte nuclear factor α

IA-2:

Autoantibodies to glutamic acid decarboxylase

IAA:

Insulin autoantibodies

ICA:

Islet cell autoantibodies

IHP:

Indian Herbal Pharmacopoeia

INGAP:

Islet Neogenesis Associated Protein

IsoLGs:

Isolevuglandins

JNK:

c-Jun N-terminal kinase pathways

KHP:

Korean Herbal Pharmacopoeia

LADA:

Latent autoimmune diabetes in adults

LHPs:

Lipid hydroperoxides

MDA:

Malondialdehyde

MODY:

Mmaturity-onset diabetes of the young

NAFDAC:

National Agency for Food and Drug Administration and Control in Nigeria

NHDs:

Nanotized herbal drugs

ONE:

4-oxononenal

PDX-1:

Pancreatic and duodenal homeobox factor-1

PKC:

Protein kinase C

PPARGC1A:

Peroxisome proliferator-activated receptor–γ coactivator-1α

RCS:

Reactive chlorine species

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Adel AM, Waled ME, Mahmoud AL, Rehab GK (2018) Association between antioxidant enzyme activities and enterovirus-infected type 1 diabetic children. Med Princ Pract 27:86. https://doi.org/10.1159/000486718

    Article  Google Scholar 

  • Ahad A, Ganai AA, Mujeeb M, Siddiqui WA (2014a) Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol Appl Pharmacol 279(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Ahad A, Mujeeb M, Ahsan H, Siddiqui WA (2014b) Prophylactic effect of baicalein against renal dysfunction in type 2 diabetic rats. Biochimie 106:101–110

    Article  CAS  PubMed  Google Scholar 

  • Ahangarpour A, Sayahi M, Sayahi M (2019) The antidiabetic and antioxidant properties of some phenolic phytochemicals: a review study. Diabetes Metab Syndr 13(1):854–857

    Article  PubMed  Google Scholar 

  • American Diabetes Association (2011) Standards of medical care in diabetes--2011. Diabetes Care 34(Suppl 1):S11–S61

    Article  PubMed Central  Google Scholar 

  • Amjad S, Jafri A, Sharma AK, Serajuddin M (2019) A novel strategy of nanotized herbal drugs and their delivery in the treatment of diabetes: present status and future prospects. J Herb Med 17-18:100279. https://doi.org/10.1016/j.hermed.2019.100279

    Article  Google Scholar 

  • Anjaneyulu M, Chopra K (2004) Nordihydroguairetic acid, a lignin, prevents oxidative stress and the development of diabetic nephropathy in rats. Pharmacology 72:42–50

    Article  CAS  PubMed  Google Scholar 

  • Aragno M, Mastrocola R, Alloatti G, Vercellinatto I, Bardini P, Geuna S, Catalano MG, Danni O, Boccuzzi G (2008) Oxidative stress triggers cardiac fibrosis in the heart of diabetic rats. Endocrinology 149(1):380–388

    Article  CAS  PubMed  Google Scholar 

  • Arcaro CA, Gutierres VO, Assis RP, Moreira TF, Costa PI, Baviera AM, Brunetti IL (2014) Piperine, a natural bioenhancer, nullifies the antidiabetic and antioxidant activities of curcumin in streptozotocin-diabetic rats. PLoS One 9:e113993. https://doi.org/10.1371/journal.pone.0113993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslan M, Orhan DD, Orhan N, Sezik E, Yesilada E (2007) In vivo antidiabetic and antioxidant potential of Helichrysum plicatum ssp. plicatum capitulums in streptozotocin-induced-diabetic rats. J Ethnopharmacol 109(1):54–59

    Article  PubMed  Google Scholar 

  • Bansal AK, Bilaspuri GS (2011) Impacts of oxidative stress and antioxidants on semen functions. Vet Med Int 2011:1. https://doi.org/10.4061/2011/686137

    Article  CAS  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease and oxidative stress. J Biol Chem 272:20313–20316

    Article  CAS  PubMed  Google Scholar 

  • Carmona F, Pereira AMS (2013) Herbal medicines: old and new concepts, truths and misunderstandings. Rev Bras 23(2):379–385

    Google Scholar 

  • Chakraborty R, Roy S, Mandal V (2016) Assessment of traditional knowledge of the antidiabetic plants of Darjeeling and Sikkim Himalayas in the context of recent phytochemical and pharmacological advances. J Integr Med 14(5):336–358

    Article  PubMed  Google Scholar 

  • Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B (2018) IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281

    Article  CAS  PubMed  Google Scholar 

  • Dallak MM, Mikhailidis DP, Haidara MA et al (2008) Oxidative stress as a common mediator for apoptosis induced-cardiac damage in diabetic rats. Open Cardiovasc Med J 2:70–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng S, Vatamaniuk M, Huang X, Doliba N, Lian M, Frank A, Velidedeoglu E, Desai NM, Koeberlein B, Wolf B, Barker CF, Naji A, Matschinsky FM, Markmann JF (2004) Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes 53(3):624–632

    Article  CAS  PubMed  Google Scholar 

  • Donath MY, Schumann DM, Faulenbach M, Ellingsgaard H, Perren A, Ehses JA (2008) Islet inflammation in type 2 diabetes from metabolic stress to therapy. Diabetes Care 31(Suppl 2):161–164

    Article  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11(1):81–128

    Article  CAS  PubMed  Google Scholar 

  • Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23(5):599–622

    Article  CAS  PubMed  Google Scholar 

  • Fiorentino TV, Prioletta A, Zuo P, Folli F (2013) Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des 19:5695–5703

    Article  CAS  PubMed  Google Scholar 

  • Fioretto P, Mauer M (2007) Histopathology of diabetic nephropathy. Semin Nephrol 27(2):195–207

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujisawa H, Zhang Z, Sun W, Huang M, Kobayashi J, Yasuda H, Kinoshita Y, Ando R, Tamura K (2012) Histopathological changes in the pancreas from a spontaneous hyperglycemic cynomolgus monkey. J Toxicol Pathol 25(3):215–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Giugliano D, Ceriello A, Paolisso G (1996) Oxidative stress and diabetic vascular complications. Diabetes Care 19(3):257–267

    Article  CAS  PubMed  Google Scholar 

  • Grabmann J (2005) Terpenoids as plant antioxidants. Vitam Horm 72:505–535

    Article  Google Scholar 

  • Guo C, Han F, Zhang C, Xiao W, Yang Z (2014) Protective effects of oxymatrine on experimental diabetic nephropathy. Planta Med 80(4):269–276

    Article  CAS  PubMed  Google Scholar 

  • Gupta BP, Sharma I, Kohli N, Sharma S, Rathi A, Sharma AK (2018) Preliminary clinical assessment and non- toxicity evaluation of an ayurvedic formulation BGR-34 in NIDDM. J Tradit Complement Med 8(4):506–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habib SL, Liang S (2014) Hyperactivation of Akt/mTOR and deficiency in tuberin increased the oxidative DNA damage in kidney cancer patients with diabetes. Oncotarget 5:2542–2550

    Article  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radical in biology and medicine, 4th edn. Clarendon Press, Oxford

    Google Scholar 

  • Hamden K, Bengara A, Amri Z, Elfeki A (2013) Experimental diabetes treated with trigonelline: effect on key enzymes related to diabetes and hypertension, β-cell and liver function. Mol Cell Biochem 381(1–2):85–94

    Article  CAS  PubMed  Google Scholar 

  • Hou S, Zheng F, Li Y, Gao L, Zhang J (2014) The protective effect of glycyrrhizic acid on renal tubular epithelial cell injury induced by high glucose. Int J Mol Sci 15(9):15026–15043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsia SH, Bazargan M, Davidson MB (2004) Effect of pancreas tonic (an Ayurvedic herbal supplement) in type 2 diabetes mellitus. Metabolism 53(9):1166–1173

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Jasmine, Sharma S, Saini V (2013) Hypolipidemic, hypoglycemic and antioxidant potential of Saraca asoca ethanolic leaves extract in streptozotocin induced experimental diabetes. Int J Pharm Pharm Sci 5(1):1–7

    CAS  Google Scholar 

  • Jeeva S, Anlin SY (2014) A review of antidiabetic potential of ethnomedicinal plants. Med Aromat Plants 3:4

    Google Scholar 

  • Jellin JM, Batz F, Hitchens K (1999) Pharmacist’s letter/prescriber’s letter natural medicines comprehensive database. Therapeutic Research Faculty, Stockton, CA

    Google Scholar 

  • Jemai H, El Feki A, Sayadi S (2009) Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. J Agric Food Chem 57(19):8798–8804

    Article  CAS  PubMed  Google Scholar 

  • Kajimoto Y, Kaneto H (2004) Role of oxidative stress in pancreatic β-cell dysfunction. Ann N Y Acad Sci 1011:168–176

    Article  CAS  PubMed  Google Scholar 

  • Kar A, Choudhary BK, Bandyopadhyay NG (2003) Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. J Ethnopharmacol 84:105–108

    Article  PubMed  Google Scholar 

  • Kini S, Tripathi P, Amarapurkar AD (2016) Histopathology of liver in diabetes mellitus—an autopsy study. Int J Sci Stud 4(5):110–113

    Google Scholar 

  • Kim JH, Lee JO, Lee SK et al (2013) Celastrol suppresses breast cancer MCF-7 cell viability via the AMP-activated protein kinase (AMPK)-induced p53-polo like kinase 2 (PLK-2) pathway. Cell Signal 25:805–813

    Article  CAS  PubMed  Google Scholar 

  • Lai CQ, Tucker KL, Parnell LD, Adiconis X, García-Bailo B, Griffith J, Meydani M, Ordovás JM (2008) PPARGC1A variation associated with DNA damage, diabetes, and cardiovascular diseases: the Boston Puerto Rican Health Study. Diabetes 57:809–816

    Article  CAS  PubMed  Google Scholar 

  • Lau YS, Tian XY, Mustafa MR, Murugan D, Liu J, Zhang Y, Lau CW, Huang Y (2013) Boldine improves endothelial function in diabetic db/db mice through inhibition of angiotensin II-mediated BMP4-oxidative stress cascade. Br J Pharmacol 170(6):1190–1198

    Article  CAS  PubMed�� PubMed Central  Google Scholar 

  • Liu JY (2014) Catalpol protect diabetic vascular endothelial function by inhibiting NADPH oxidase. Zhongguo Zhong Yao Za Zhi 15:2936–2941

    Google Scholar 

  • Ma SW, Benzie IF, Chu TT, Fok BS, Tomlinson B, Critchley LA (2008) Effect of Panax ginseng supplementation on biomarkers of glucose tolerance, antioxidant status and oxidative stress in type 2 diabetic subjects: results of a placebo-controlled human intervention trial. Diabetes Obes Metab 10:1125–1127

    Article  CAS  PubMed  Google Scholar 

  • Magenta A, Greco S, Capogrossi MC, Gaetano C, Martelli F (2014) Nitric oxide, oxidative stress, and p66shc interplay in diabetic endothelial dysfunction. Biomed Res Int 2014:1. https://doi.org/10.1155/2014/193095

    Article  CAS  Google Scholar 

  • Maiese K (2015) New insights for oxidative stress and diabetes mellitus. Oxidative Med Cell Longev 2015:1. https://doi.org/10.1155/2015/875961

    Article  Google Scholar 

  • Maritim AC, Sanders RA, Watkins JB (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17(1):24–38

    Article  CAS  PubMed  Google Scholar 

  • Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J (2012) The role of oxidative stress and antioxidants in diabetic complications. SQU Med J 12(1):5–18

    Google Scholar 

  • Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TPA (2007) Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr 40:163–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohamed J, Nazratun NAH, Zariyantey AH, Budin SB (2016) Mechanisms of diabetes-induced liver damage-the role of oxidative stress and inflammation. Sultan Qaboos Univ Med J 16(2):132–141

    Article  Google Scholar 

  • Mohammad MD, Dimitri PM, Mohamed AH, Ismaeel MB, Olaa MT, Moshira AR, Hanaa ZY, Zeinb AA, Ibrahim MI, Samy ME, Laila AR, Noha AA (2008) Oxidative stress as a common mediator for apoptosis induced-cardiac damage in diabetic rats. Open Cardiovasc Med J 2:70–78

    Article  Google Scholar 

  • Murali R, Karthikeyan A, Saravanan R (2013) Protective effects of D-limonene on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rats. Basic Clin Pharmacol Toxicol 112(3):175–181

    Article  CAS  PubMed  Google Scholar 

  • Naderi R, Mohaddes G, Mohammadi M, Alihemmati A, Badalzadeh R, Ghaznavi R, Ghyasi R, Mohammadi S (2015) Preventive effects of garlic (Allium sativum) on oxidative stress and histopathology of cardiac tissue in streptozotocin-induced diabetic rats. Acta Physiol Hung 102(4):380–390

    Article  CAS  PubMed  Google Scholar 

  • O’Neal KS, Johnson JL, Panak RL (2016) Recognizing and appropriately treating latent autoimmune diabetes in adults. Pharm Ther 29(4):249–252

    Google Scholar 

  • Ohnishi M, Matuo T, Tsuno T, Hosoda A, Nomura E, Taniguchi H, Sasaki H, Morishita H (2004) Antioxidant activity and hypoglycemic effect of ferulic acid in STZ-induced diabetic mice and KK-Ay mice. Biofactors 21:315–319

    Article  CAS  PubMed  Google Scholar 

  • Olokoba AB, Obateru OA, Olokoba LB (2012) Type 2 diabetes mellitus: a review of current trends. Oman Med J 27(4):269–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, Sun JN, Ma DL, Han YF, Fong WF, Ko KM (2013) New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med. https://doi.org/10.1155/2013/627375

  • Park JS, Yang JS, Hwang BY, Yoo BK, Han K (2009) Hypoglycemic effect of yacon tuber extract and its constituent, chlorogenic acid, in streptozotocin-induced diabetic rats. Biomol Ther 17(3):256–262

    Article  CAS  Google Scholar 

  • Park CH, Yokozawa T, Noh JS (2014) Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, attenuates diabetes-induced renal damage through the advanced glycation end product-related pathway in db/db mice. J Nutr 144(8):1150–1157

    Article  CAS  PubMed  Google Scholar 

  • Patil KN, Patil PS, Dudhgaonkar TD, Mohite SK, Magdum CS (2016) Ayurvedic and allopathic antidiabetic formulations avilable in market. Int J Res Sci Technol 2(2):232–242

    Google Scholar 

  • Pourghasem M, Shafi H, Babazadeh Z (2015) Histological changes of kidney in diabetic nephropathy. Caspian J Intern Med 6(3):120–127

    PubMed  PubMed Central  Google Scholar 

  • Prabakaran D, Ashokkumar N (2013) Protective effect of esculetin on hyperglycemia-mediated oxidative damage in the hepatic and renal tissues of experimental diabetic rats. Biochimie 95(2):366–373

    Article  CAS  PubMed  Google Scholar 

  • Prasad SK, Kulshreshtha A, Qureshi TN (2009) Antidiabetic activity of some herbal plants in streptozotocin induced diabetic albino rats. Pak J Nutr 8:551–557

    Article  Google Scholar 

  • Priyadarsini KI, Khopde SM, Kumar SS, Mohan H (2002) Free radical studies of ellagic acid, a natural phenolic antioxidant. J Agric Food Chem 50(7):2200–2206

    Article  CAS  PubMed  Google Scholar 

  • Qi MY, Yang JJ, Zhou B, Pan DY, Sun X (2014) Study on the protective effect of ursolic acid on alloxan-induced diabetic renal injury and its underlying mechanisms. Zhongguo Ying Yong Sheng Li Xue Za Zhi 30:445–448

    CAS  PubMed  Google Scholar 

  • Qiang G, Yang X, Xuan Q, Shi L et al (2014) Salvianolic acid A prevents the pathological progression of hepatic fibrosis in high-fat diet-fed and streptozotocin-induced diabetic rats. Am J Chin Med 42(5):1183–1198

    Article  CAS  PubMed  Google Scholar 

  • Rahigude A, Bhutada P, Kaulaskar S, Aswar M, Otari K (2012) Participation of antioxidant and cholinergic system in protective effect of naringenin against type-2 diabetes-induced memory dysfunction in rats. Neuroscience 226:62–72

    Article  CAS  PubMed  Google Scholar 

  • Rajesham VV, Ravindernath A, Bikshapathi DVRN (2012) A review on medicinal plant and herbal drug formulation used in diabetes mellitus. Indo Am J Pharm Res 2(10):1200–1212

    Google Scholar 

  • Sabu MC, Kuttan R (2002) Anti-diabetic activity of medicinal plants and its relationship with their antioxidant property. J Ethnopharmacol 81:155–160

    Article  CAS  PubMed  Google Scholar 

  • Samad A, Shams MS, Ullah Z, Wais M, Nazish I, Sultana Y, Aqil M (2009) Status of herbal medicines in the treatment of diabetes: a review. Curr Diabetes Rev 5:102–111

    Article  CAS  PubMed  Google Scholar 

  • Saravanan R, Pari L (2005) Antihyperlipidemic and antiperoxidative effect of Diasulin, a polyherbal formulation in alloxan induced hyperglycemic rats. BMC Complement Altern Med 5:14. https://doi.org/10.1186/1472-6882-5-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Savant D, Panchal P, Page A (2013) Evaluation of antidiabetic, and antioxidant activities of madhumardan churna- a polyherbal ayurvedic formulation. Int J Pharm Res Dev 5(3):191–199

    Google Scholar 

  • Sena CM, Pereira AM, Seiça R (2013) Endothelial dysfunction—a major mediator of diabetic vascular disease. Biochim Biophys Acta 1832:2216–2231

    Article  CAS  PubMed  Google Scholar 

  • Sharma S (2015) Current status of herbal product: regulatory overview. J Pharm Bioallied Sci 7(4):293–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Joel S, Shuping S, Betty L, Ruc T (2007) Diabetic nephropathy is associated with oxidative stress and decreased renal nitric oxide production. J Am Soc Nephrol 18:2945–2952

    Article  Google Scholar 

  • Sharma U, Sahu RK, Roy A, Golwala DK (2010) In vivo antidiabetic and antioxidant potential of Stephania hernandifolia in streptozotocin-induced-diabetic rats. J Young Pharm 2(3):255–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheikhpour R (2013) Diabetes and oxidative stress: the mechanism and action. Iran J Diabetes Obes 5(1):40–45

    Google Scholar 

  • Sridharan K, Mohan R, Ramaratnam S et al (2011) Ayurvedic treatments for diabetes mellitus. Cochrane Database Syst Rev (12):CD008288

    Google Scholar 

  • Siddiqui AA, Siddiqui SA, Ahmad S, Siddiqui S, Ahsan I, Sahu K (2013) Diabetes: mechanism, pathophysiology and management—a review. Int J Drug Dev Res 5(2):1–23

    Google Scholar 

  • Simone S, Gorin Y, Velagapudi C, Abboud HE, Habib SL (2008) Mechanism of oxidative dna damage in diabetes tuberin inactivation and downregulation of DNA repair enzyme 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine-DNA glycosylase. Diabetes 57:2626–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Shin S (2009) Changes in erythrocyte aggregation and deformability in diabetesmellitus: a brief review. Indian J Exp Biol 47(1):7–15

    PubMed  Google Scholar 

  • Singh R, Kaur N, Kishore L, Gupta GK (2013) Management of diabetic complications: a chemical constituents based approach. J Ethnopharmacol 150(1):51–70

    Article  CAS  PubMed  Google Scholar 

  • Steenkamp DW, Alexanian SM, Sternthal E (2014) Approach to the patient with atypical diabetes. CMAJ 186(9):678–684

    Article  PubMed  PubMed Central  Google Scholar 

  • Szkudelska K, Nogowski L, Szkudelski T (2009) Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes. J Steroid Biochem Mol Biol 113(1–2):17–24

    Article  CAS  PubMed  Google Scholar 

  • Taheri E, Djalali M, Saedisomeolia A, Moghadam AM, Djazayeri A, Qorbani M (2012) The relationship between the activities of antioxidant enzymes in red blood cells and body mass index in Iranian type 2 diabetes and healthy subjects. J Diabetes Metab Dis 11:3

    Article  Google Scholar 

  • Tang DQ, Wei YQ, Yin XX, Lu Q, Hao HH, Zhai YP, Wang JY, Ren J (2011) In vitro suppression of quercetin on hypertrophy and extracellular matrix accumulation in rat glomerular mesangial cells cultured by high glucose. Fitoterapia 82(6):920–926

    Article  CAS  PubMed  Google Scholar 

  • Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF, Cheah S, Mustafa MR, Awang K (2013) Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules 18:9770–9784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari P (2015) Recent trends in therapeutic approaches for diabetes management: a comprehensive update. J Diabetes Res 2015:1. https://doi.org/10.1155/2015/340838

    Article  Google Scholar 

  • Tiwari AK, Madh J (2002) Diabetes mellitus and multiple therapeutic approaches of phytochemicals: present status and future prospects. Curr Sci 83:30–38

    CAS  Google Scholar 

  • Ullah A, Khan A, Khan I (2016) Diabetes mellitus and oxidative stress––a concise review. Saudi Pharm J 24:547–553

    Article  Google Scholar 

  • Vadivelan R, Mandal D, Payyavala U, Dhanabal SP, Satishkumar MN, Antony S, Elango K (2011) Hypoglycemic, antioxidant and hypolipidemic activity of Asparagus racemosus on streptozotocin-induced diabetes in rats. Adv Appl Sci Res 2(3):179–185

    Google Scholar 

  • Vaidya ADB, Devasagayam TPA (2007) Current status of herbal drugs in India: an overview. J Clin Biochem Nutr 41:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Vianna R, Brault A, Martineau LC et al (2011) In vivo anti-diabetic activity of the ethanolic crude extract of Sorbus decora C.K.Schneid. (Rosaceae): a medicinal plant used by Canadian James Bay Cree Nations to treat symptoms related to diabetes. Evid Based Complement Alternat Med 2011:237941

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinayagam R, Xiao J, Xu B (2017) An insight into antidiabetic properties of dietary phytochemicals. Phytochem Rev 16:535. https://doi.org/10.1007/s11101-017-9496-2

    Article  CAS  Google Scholar 

  • Waltner-Law ME, Wang XL, Law BK et al (2002) Epigallocatechin gallate: a constituent of green tea, represses hepatic glucose production. J Biol Chem 277:34933–34940

    Article  CAS  PubMed  Google Scholar 

  • Williamson EM (2001) Synergy and other interactions in phytomedicines. Phytomedicine 8:401–409

    Article  CAS  PubMed  Google Scholar 

  • Woldu MA, Lenjisa JL, Satessa GD (2014) Recent advancements in diabetes pharmacotherapy. Biochem Pharmacol 3:143

    Article  Google Scholar 

  • Yadav RK, Keshari AK, Singh AK, Saha S (2015) Antidiabetic and hypolipidemic effect of Ficus racemosa petroleum ether extract in streptozotocin induced diabetic albino rats. Int J Pharm Pharm Sci 7(4):283–287

    Google Scholar 

  • Yamabe N, Noh JS, Park CH, Kang KS, Shibahara N, Tanaka T, Yokozawa T (2010) Evaluation of loganin, iridoid glycoside from Corni Fructus, on hepatic and renal glucolipotoxicity and inflammation in type 2 diabetic db/db mice. Eur J Pharmacol 648(1–3):179–187

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivekananda Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, R., Mandal, V. (2021). Role of Phytomedicine in Alleviating Oxidative Stress-Mediated Vascular Complications in Diabetes. In: Mandal, S.C., Chakraborty, R., Sen, S. (eds) Evidence Based Validation of Traditional Medicines. Springer, Singapore. https://doi.org/10.1007/978-981-15-8127-4_7

Download citation

Publish with us

Policies and ethics