Skip to main content

Role of Phytomolecules on the Basic Biology of Aging

  • Chapter
  • First Online:
Evidence Based Validation of Traditional Medicines

Abstract

Aging is an inevitable process influenced by genetic, lifestyle, and environmental components which increases the primary risk of multiple age-related chronic diseases. The efficacy of any herbal medication depends on delivering adequate levels of plant extract from the therapeutically active phytomolecules. Phytomolecules such as flavonoids, phenolics, and hydrophilic molecules are predominant in vegetables, nuts, teas, wines, fruits, grains, olive oil, and chocolate. Polyphenols are secondary plant metabolites and are packed with potential health benefits of plant-rich dietary polyphenols as plant-rich antioxidant diets. In this chapter, we have focused on several recently identified phytochemicals having potent antiaging properties, i.e., silymarin, 18α-glycyrrhetinic acid, piceatannol, withanolide, and other polyphenols, on the lifespan of model organisms and summarize the current understanding of phytomolecules interaction with various signaling mechanism pathways of aging context relevant to human wellness. Natural phytochemicals are widely approved for antiaging properties that have less side effects compared to synthetic and that are easier to manage for human beings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Softcover Book
USD 219.99
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s diseases

C. elegans :

Caenorhabditis elegans

DR:

Dietary restriction

PD:

Parkinson’s diseases

ROS:

Reactive oxygen species

References

  • Aiello A, Accardi G, Candore G, Gambino CM, Mirisola M, Taormina G, Caruso C (2017) Nutrient sensing pathways as therapeutic targets for healthy ageing. Expert Opin Ther Targets 21(4):371–380

    Article  CAS  PubMed  Google Scholar 

  • Akhoon BA, Pandey S, Tiwari S, Pandey R (2016) Withanolide A offers neuroprotection, ameliorates stress resistance and prolongs the life expectancy of Caenorhabditis elegans. Exp Gerontol 78:47–56

    Article  CAS  PubMed  Google Scholar 

  • Alam N, Hossain M, Khalil MI, Moniruzzaman M, Sulaiman SA, Gan SH (2012) Recent advances in elucidating the biological properties of Withania somnifera and its potential role in health benefits. Phytochem Rev 11(1):97–112

    Article  CAS  Google Scholar 

  • Asthana J, Yadav AK, Pant A, Pandey S, Gupta MM, Pandey R (2015) Specioside ameliorates oxidative stress and promotes longevity in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 169:25–34

    Article  CAS  PubMed  Google Scholar 

  • Asthana J, Yadav D, Pant A, Yadav AK, Gupta MM, Pandey R (2016) Acacetin 7-O-α-l-rhamnopyranosyl (1–2) β-D-xylopyranoside elicits life-span extension and stress resistance in Caenorhabditis elegans. J Gerontol Ser A Biol Med Sci 71(9):1160–1168

    Article  CAS  Google Scholar 

  • Bahrami SA, Bakhtiari N (2016) Ursolic acid regulates aging process through enhancing of metabolic sensor proteins level. Biomed Pharmacother 82:8–14

    Article  CAS  PubMed  Google Scholar 

  • Baitharu I, Jain V, Deep SN, Shroff S, Sahu JK, Naik PK, Ilavazhagan G (2014) Withanolide A prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia. PLoS One 9(10):e105311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhullar KS, Hubbard BP (2015) Lifespan and healthspan extension by resveratrol. Biochim Biophys Acta 1852(6):1209–1218

    Article  CAS  PubMed  Google Scholar 

  • Büchter C, Ackermann D, Honnen S, Arnold N, Havermann S, Koch K, Wätjen W (2015) Methylated derivatives of myricetin enhance life span in Caenorhabditis elegans dependent on the transcription factor DAF-16. Food Funct 6(10):3383–3392

    Article  PubMed  CAS  Google Scholar 

  • Conti V, Izzo V, Corbi G, Russomanno G, Manzo V, Lise D, Filippelli A (2016) Antioxidant supplementation in the treatment of aging-associated diseases. Front Pharmacol 7:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fulop T, Larbi A, Witkowski JM, McElhaney J, Loeb M, Mitnitski A, Pawelec G (2010) Aging, frailty and age-related diseases. Biogerontology 11(5):547–563

    Article  CAS  PubMed  Google Scholar 

  • Garg HS, Bhandari SPS, Tripathi SC, Patnaik GK, Puri A, Saxena R, Saxena RP (1994) Antihepatotoxic and immunostimulant properties of iridoid glycosides of Scrophulariakoelzii. Phytother Res 8(4):224–228

    Article  CAS  Google Scholar 

  • Hill AA, Hunter CP, Tsung BT, Tucker-Kellogg G, Brown EL (2000) Genomic analysis of gene expression in C. elegans. Science 290(5492):809–812

    Article  CAS  PubMed  Google Scholar 

  • Jeszka-Skowron M, Sentkowska A, Pyrzyńska K, De Peña MP (2016) Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: influence of green coffee bean preparation. Eur Food Res Technol 242(8):1403–1409

    Article  CAS  Google Scholar 

  • Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493(7432):338–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampkötter A, Timpel C, Zurawski RF, Ruhl S, Chovolou Y, Proksch P, Wätjen W (2008) Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comp Biochem Physiol B: Biochem Mol Biol 149(2):314–323

    Article  CAS  Google Scholar 

  • Kashyap D, Tuli HS, Sharma AK (2016) Ursolic acid (UA): a metabolite with promising therapeutic potential. Life Sci 146:201–213

    Article  CAS  PubMed  Google Scholar 

  • Koch K, Havermann S, Büchter C, Wätjen W (2014) Caenorhabditis elegans as model system in pharmacology and toxicology: effects of flavonoids on redox-sensitive signalling pathways and ageing. ScientificWorldJournal 2014:920398

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar J, Park KC, Awasthi A, Prasad B (2015) Silymarin extends lifespan and reduces proteotoxicity in C. elegans Alzheimer’s model. CNS Neurol Disord Drug Targets 14(2):295–302

    Article  CAS  PubMed  Google Scholar 

  • Kurapati KRV, Atluri VSR, Samikkannu T, Nair MP (2013) Ashwagandha (Withania somnifera) reverses β-amyloid 1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND). PLoS One 8(10):e77624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitzmann C (2016) Characteristics and health benefits of phytochemicals. Complement Med Res 23(2):69–74

    Article  Google Scholar 

  • Liao VHC, Yu CW, Chu YJ, Li WH, Hsieh YC, Wang TT (2011) Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech Ageing Dev 132(10):480–487

    Article  CAS  PubMed  Google Scholar 

  • Liobikas J, Majiene D, Trumbeckaite S, Kursvietiene L, Masteikova R, Kopustinskiene DM, Bernatoniene J (2011) Uncoupling and antioxidant effects of ursolic acid in isolated rat heart mitochondria. J Nat Prod 74(7):1640–1644

    Article  CAS  PubMed  Google Scholar 

  • Liu L (2016) Silymarin as a promising natural agent for Alzheimer’s disease. Int J Sci Res 5(4):482–483

    Google Scholar 

  • Liu N, Wu C, Sun L, Zheng J, Guo P (2014) Sesamin enhances cholesterol efflux in RAW264. 7 macrophages. Molecules 19(6):7516–7527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, Zuo L (2018) Role of ROS and nutritional antioxidants in human diseases. Front Physiol 9:477

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Lluch G, Navas P (2016) Calorie restriction as an intervention in ageing. J Physiol 594(8):2043–2060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luyten W, Antal P, Braeckman BP, Bundy J, Cirulli F, Fang-Yen C, Metspalu A (2016) Ageing with elegans: a research proposal to map healthspan pathways. Biogerontology 17(4):771–782

    Article  PubMed  Google Scholar 

  • Lyons MM, Yu C, Toma RB, Cho SY, Reiboldt W, Lee J, Van Breemen RB (2003) Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem 51(20):5867–5870

    Article  CAS  PubMed  Google Scholar 

  • Mali PY (2014) Beneficial effect of extracts of Premna integrifolia root on human leucocytes and erythrocytes against hydrogen peroxide induced oxidative damage. Chron Young Sci 5(1):53

    Article  Google Scholar 

  • Mattson MP (2008) Dietary factors, hormesis and health. Ageing Res Rev 7(1):43–48

    Article  PubMed  Google Scholar 

  • Meng S, Cao J, Feng Q, Peng J, Hu Y (2013) Roles of chlorogenic acid on regulating glucose and lipids metabolism: a review. Evid Based Complement Alternat Med 2013:801457

    PubMed  PubMed Central  Google Scholar 

  • Nakatani Y, Yaguchi Y, Komura T, Nakadai M, Terao K, Kage-Nakadai E, Nishikawa Y (2018) Sesamin extends lifespan through pathways related to dietary restriction in Caenorhabditis elegans. Eur J Nutr 57(3):1137–1146

    Article  CAS  PubMed  Google Scholar 

  • Negi H, Shukla A, Khan F, Pandey R (2016) 3β-Hydroxy-urs-12-en-28-oic acid prolongs lifespan in C. elegans by modulating JNK-1. Biochem Biophys Res Commun 480(4):539–543

    Article  CAS  PubMed  Google Scholar 

  • Ovesná Z, Kozics K, Bader Y, Saiko P, Handler N, Erker T, Szekeres T (2006) Antioxidant activity of resveratrol, piceatannol and 3, 3′, 4, 4′, 5, 5′-hexahydroxy-trans-stilbene in three leukemia cell lines. Oncol Rep 16(3):617–624

    PubMed  Google Scholar 

  • Pan H, Finkel T (2017) Key proteins and pathways that regulate lifespan. J Biol Chem 292(16):6452–6460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pant A, Pandey R (2015) Bioactive phytomolecules and aging in Caenorhabditis elegans. Healthy Aging Res 4:1–15

    Google Scholar 

  • Prakash D, Gupta C, Sharma G (2012) Importance of phytochemicals in nutraceuticals. J Chin Med Res Dev 1:70–78

    Google Scholar 

  • Sadowska-Bartosz I, Bartosz G (2014) Effect of antioxidants supplementation on aging and longevity. BioMed Res Int 2014:404680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salminen A, Kaarniranta K (2012) AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 11(2):230–241

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Itagaki S, Kurokawa T, Ogura J, Kobayashi M, Hirano T, Sugawara M, Iseki K (2011) In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm 403(1):136–138

    Article  CAS  PubMed  Google Scholar 

  • Sayed AA (2011) Ferulsinaic acid attenuation of advanced glycation end products extends the lifespan of Caenorhabditis elegans. J Pharm Pharmacol 63(3):423–428

    Article  CAS  PubMed  Google Scholar 

  • Sebastián D, Palacín M, Zorzano A (2017) Mitochondrial dynamics: coupling mitochondrial fitness with healthy aging. Trends Mol Med 23(3):201–215

    Article  PubMed  CAS  Google Scholar 

  • Septembre-Malaterre A, Remize F, Poucheret P (2018) Fruits and vegetables, as a source of nutritional compounds and phytochemicals: changes in bioactive compounds during lactic fermentation. Food Res Int 104:86–99

    Article  CAS  PubMed  Google Scholar 

  • Shen P, Yue Y, Sun Q, Kasireddy N, Kim KH, Park Y (2017) Piceatannol extends the lifespan of Caenorhabditis elegans via DAF-16. Biofactors 43(3):379–387

    Article  CAS  PubMed  Google Scholar 

  • Shukla V, Phulara SC, Yadav D, Tiwari S, Kaur S, Gupta MM, Nazir A, Pandey R (2012a) Iridoid compound 10-O-trans-p-coumaroylcatalpol extends longevity and reduces alpha synuclein aggregation in Caenorhabditis elegans. CNS Neurol Disord Drug Targets 11(8):984–992

    Article  CAS  PubMed  Google Scholar 

  • Shukla V, Yadav D, Phulara SC, Gupta MM, Saikia SK, Pandey R (2012b) Longevity-promoting effects of 4-hydroxy-E-globularinin in Caenorhabditis elegans. Free Radic Biol Med 53(10):1848–1856

    Article  CAS  PubMed  Google Scholar 

  • Si H, Liu D (2014) Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J Nutr Biochem 25(6):581–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Sammi SR, Laxman TS, Pant A, Nagar A, Trivedi S, Bhatta RS, Tandon S, Pandey R (2017) Silymarin promotes longevity and alleviates Parkinson’s associated pathologies in Caenorhabditis elegans. J Funct Foods 31:32–43

    Article  CAS  Google Scholar 

  • Stephan J, Franke J, Ehrenhofer-Murray AE (2013) Chemical genetic screen in fission yeast reveals roles for vacuolar acidification, mitochondrial fission, and cellular GMP levels in lifespan extension. Aging Cell 12(4):574–583

    Article  CAS  PubMed  Google Scholar 

  • Stolf AM, Cardoso CC, Acco A (2017) Effects of silymarin on diabetes mellitus complications: a review. Phytother Res 31(3):366–374

    Article  PubMed  Google Scholar 

  • Walker DW, McColl G, Jenkins NL, Harris J, Lithgow GJ (2000) Natural selection: evolution of lifespan in C. elegans. Nature 405(6784):296–297

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Catana F, Yang Y, Roderick R, Van Breemen RB (2002) An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. J Agric Food Chem 50(3):431–435

    Article  CAS  PubMed  Google Scholar 

  • Zarse K, Jabin S, Ristow M (2012) L-Theanine extends lifespan of adult Caenorhabditis elegans. Eur J Nutr 51(6):765–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, Li HB (2015) Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20(12):21138���21156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng SQ, Huang XB, Xing TK, Ding AJ, Wu GS, Luo HR (2017) Chlorogenic acid extends the lifespan of Caenorhabditis elegans via insulin/IGF-1 signaling pathway. J Gerontol A 72(4):464–472

    CAS  Google Scholar 

Download references

Acknowledgments

The Authors are grateful to the director of CSIR–NBRI, Lucknow, India, for his kind support. SP was financially supported by ICMR, India (45/11/2018-PHA/BMS/OL) through, Senior Research Fellowship grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Singh Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, S., Chauhan, P.S. (2021). Role of Phytomolecules on the Basic Biology of Aging. In: Mandal, S.C., Chakraborty, R., Sen, S. (eds) Evidence Based Validation of Traditional Medicines. Springer, Singapore. https://doi.org/10.1007/978-981-15-8127-4_6

Download citation

Publish with us

Policies and ethics