Skip to main content

Reverse Pharmacology: A Tool for Drug Discovery from Traditional Medicine

  • Chapter
  • First Online:
Evidence Based Validation of Traditional Medicines

Abstract

Reverse pharmacology approach reduces the three major bottlenecks of drug discovery. In India this approach is pioneered with the traditional basis of ayurveda. In reverse pharmacology, traditional drugs which have good efficacy and lesser side effects are chosen as a starting material for drug development. The major issue with the traditional drugs is they are polycomponent in nature with variety of biological nature. It is difficult to identify the components responsible for therapeutic action and their mechanism of action. In recent days various approaches are proposed to solve this issue. In India many hits and leads are developed from ayurvedic drugs using this approach. But still those leads remain at research level and do not reach market due to inadequate involvement from pharma industries. Various initiatives have been taken to bridge this gap. Further various strategies are suggested by Indian researchers to improve the methodology and to effectively utilize this approach for drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Softcover Book
USD 219.99
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APE:

Ayurvedic pharmacoepidemiology

RP:

Reverse pharmacology

References

  • Amin AH, Subbaiah TV, Abbassi KM (1969) Berberine sulfate: antimicrobial activity, bioassay and mode of action. Can J Microbiol 15:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Anis NA, Berry SC, Burton NR, Lodge D (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79:565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antarkar D, Vaidya A, Doshi J, Athavale A, Vinchoo K, Natekar M, Tathed MR, Ramesh PS, Kale V (1980) A double-blind clinical trial of arogyavardhini-an Ayurvedic drug in acute viral hepatitis. Indian J Med Res 72:588–593

    CAS  PubMed  Google Scholar 

  • Atal CK, Dubey RK, Singh J (1985) Biochemical basis of enhance drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. J Pharmacol Exp Ther 232(1):258–262

    CAS  PubMed  Google Scholar 

  • Chandra D, Gupta SS (1972) Anti-inflammatory and antiarthritic activity of volatile oil of Curcuma longa (Haldi). Indian J Med Res 60:138–142

    CAS  PubMed  Google Scholar 

  • Chorghade MS, Dolphin DH, Dupre D, Hill DR, Lee EC, Wijesekara TP (1996a) Improved protocols for the synthesis and halogenation of sterically hindered metalloporphyrins. Synthesis 11:1320–1324

    Article  Google Scholar 

  • Chorghade MS, Dolphin DH, Hill DR, Hino F, Lee EC, Zhang LY, Pariza JR (1996b) Metalloporphyrins as chemical mimics of cytochrome P-450 systems. Pure Appl Chem 68(3):753–756

    Article  CAS  Google Scholar 

  • Collins M Jr (2010) Future trends in microwave synthesis. Future Med Chem 2(2):151–155

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100(1-2):72–79

    Article  CAS  PubMed  Google Scholar 

  • Dahanukar S, Thatte U, Pai N, More P, Karandikar S (1988) Immunotherapeutic modification by Tinospora cordifolia of abdominal sepsis induced by caecal ligation in rats. Indian J Gastroenterol 7:21–23

    CAS  PubMed  Google Scholar 

  • Das B, Tandon V, Lyndem LM, Grey AI, Ferro VA (2009) Phytochemicals from Flemingia vestita (Fabaceae) and Stephania glabra (Menispermaceae) alter cGMP concentration on the cestode Raillietina echinobothrida. Comp Biochem Pysiol C Toxicol Pharmacol 149:397–402

    Article  Google Scholar 

  • Davis L, Kuttan G (1998) Suppressive effect of cyclophosphamide-induced toxicity by Withania somnifera extract in mice. J Ethnopharmcol 62(3):209–214

    Article  CAS  Google Scholar 

  • de la Hoz A, Diaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34(2):164–178

    Article  PubMed  Google Scholar 

  • Dong M, Sitkovsky M, Kallmerten A, Jones G (2008) Synthesis of 8-substituted xanthines via 5,6-diaminouracils: an efficient route to A2A adenosine receptor antagonists. Tetrahedron Lett 49(31):4633–4635

    Article  CAS  Google Scholar 

  • Gordaliza M (2009) Terpenyl-purines from the sea. Mar Drugs 7(4):833–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmstedt B (1972) The ordeal bean of old Calabar: the pageant of Physostigma venenosum in medicine. In: Swain T (ed) Plants in the development of modern medicine. Harvard University Press, Cambridge, pp 303–360

    Google Scholar 

  • Huber R, Jones G (1992) Acceleration of the orthoester Claisen rearrangement by clay catalyzed microwave thermolysis: expeditious route to bicyclic lactones. J Org Chem 57(21):5778–5780

    Article  CAS  Google Scholar 

  • Jones G, Chapman B (1993) Decarboxylation of indole-2-carboxylic acids: improved procedures. J Org Chem 58(20):5558–5559

    Article  CAS  Google Scholar 

  • Jones G, Mathews J (1997) Bifunctional antitumor agents. Derivatives of pyrrolo[9, 10-b] phenanthrene—a DNA intercalative delivery template. Tetrahedron 53(43):14599–14614

    Article  CAS  Google Scholar 

  • Kallmerten A, Jones G (2010) Microwave accelerated synthesis of PET image contrast agents for AD research. Curr Alzheimer Res 7(3):251–254

    Article  CAS  PubMed  Google Scholar 

  • Klayman DL (1985) Qinghaosu (artemisinin): an antimalarial drug from China. Science 228:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, Wang S, Wu J, Wang Y, Li Z, Liu J, Jiang JD (2004) Berberine is a novel cholesterol lowering drug working through a unique mechanism distinct from statins. Nat Med 10(12):1344–1351

    Article  CAS  PubMed  Google Scholar 

  • LaBeaume P, Placzek M, Daniels M, Kendrick I, Ng P, McNeel M et al (2010) Microwave-accelerated fluorodenitrations and nitrodehalogenations: expeditious routes to labeled PET ligands and fluoropharmaceuticals. Tetrahedron Lett 51(14):1906–1909

    Article  CAS  Google Scholar 

  • Lee JA, Uhlik MT, Moxham CM, Tomandl D, Sall DJ (2012) Modern phenotypic drug discovery is a viable, neoclassic pharma strategy. J Med Chem 55:4527–4538

    Article  CAS  PubMed  Google Scholar 

  • Lewis WH (2003) Pharmaceutical discoveries based on ethnomedicinal plants: 1985 to 2000 and beyond. Econ Bot 57(1):126–134

    Article  Google Scholar 

  • Li-Weber M (2009) New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev 35:57–68

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Lin Y, Xiao Z, Kappen L, Goldberg I, Kallmerten A et al (2009) Designed DNA probes from the neocarzinostatin family: impact of glycosyl linkage stereochemistry on bulge base binding. Bioorg Med Chem 17(6):2428–2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin WR (1983) Pharmacology of opioids. Pharmacol Rev 35:283–323

    CAS  PubMed  Google Scholar 

  • Mashelkar RA (2003) Chitrakoot declaration, convention of National Botanical Research Institute, published by NBRI, Lucknow

    Google Scholar 

  • Moghaddam B (2003) Bringing order to the glutamate chaos in schizophrenia. Neuron 40:881–884

    Article  CAS  PubMed  Google Scholar 

  • O’Connell D, Roblin D (2006) Translational research in the pharmaceutical industry: from bench to bedside. Drug Discov Today 11:833–838

    Article  PubMed  Google Scholar 

  • Olney JW (2003) Excitotoxicity, apoptosis and neuropsychiatric disorders. Curr Opin Pharmacol 3(1):101–109

    Article  CAS  PubMed  Google Scholar 

  • Padma TV (2005) Ayurveda: outlook. Nature 436:486

    Article  CAS  PubMed  Google Scholar 

  • Pandey MM, Rastogi S, Rawat AKS (2008) Indian herbal drug for general healthcare: an overview. J Alternat Med 6(1):1–12

    Google Scholar 

  • Patwardhan B (2012) The quest for evidence-based Ayurveda: lessons learned. Curr Sci 102(10):1406–1417

    Google Scholar 

  • Patwardhan B, Vaidya ADB (2010) Natural products drug discovery: accelerating the clinical candidate development using reverse pharmacology approaches. Indian J Exp Biol 48:220–227

    CAS  PubMed  Google Scholar 

  • Patwardhan B, Vaidhya ADB, Chorghade M (2004) Ayurveda and natural products drug discovery. Curr Sci 86:789–799

    Google Scholar 

  • Patwardhan B, Vaidya ADB, Chorghade M, Joshi PS (2008) Reverse pharmacology and systems approaches for drug discovery and development. Curr Bioact Comp 4(4):201–212

    Article  CAS  Google Scholar 

  • Raut A (2013) Scope and potential of integrative medicine in current healthcare scenario’ in conference Samyukti 2013, an evidence-based approach to integrating Ayurveda and Allopathy, organized by MS Ramaiah Academy of Health and Applied Sciences, and Institute of Transdisciplinary Health Sciences and Technology, Bangalore

    Google Scholar 

  • Raut AA, Chorghade MS, Ashok DB (2011) Reverse pharmacology. In: Kapetanovic IM (ed) Drug discovery and development—present and future, 1st edn. Janeza Trdine, Croatia, pp 88–126

    Google Scholar 

  • Satyavati GV, Dwarkanath C, Tripathi SN (1969) Experimental studies on the hypocholesterolemic effect of Commiphora mukul Engl. (Guggul). Indian J Med Res 57:1950–1952

    CAS  PubMed  Google Scholar 

  • Seamon KB, Padgett W, Daly JW (1981) Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A 78(6):3363–3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen G, Bose K (1931) Rauwolfia serpentina, a new Indian drug for insanity and hypertension. Indian M World 21:194–201

    Google Scholar 

  • Torregrossa J, Bubley G, Jones G (2006) Microwave expedited synthesis of 5-aminocamptothecin analogs: inhibitors of hypoxia inducible factor HIF-1alpha. Bioorg Med Chem Lett 16(23):6082–6085

    Article  CAS  PubMed  Google Scholar 

  • Vaidya ADB (2006) Reverse pharmacological correlates of Ayurvedic drug actions. Ind J Pharmacol 38(5):311–315

    Article  Google Scholar 

  • Vaidya RA, Aloorkar SD, Sheth AR, Pandya SK (1978) Activity of bromoergocryptine, mucuna pruriens and L-dopa in the control of hyperprolactinaemia. Neurol India 26:179–182

    CAS  PubMed  Google Scholar 

  • Vaidya AB, Antarkar DS, Doshi JC, Bhatt AD, Ramesh V, Vora PV, Perissond D, Baxi AJ, Kale PM (1996) Picrorhiza kurroa (kutki) Royle ex Benth as a hepatoprotective agent-experimental and clinical studies. J Postgrad Med 42:105–108

    CAS  PubMed  Google Scholar 

  • Vaidya RA, Vaidya ADB, Patwardhan B, Tillu G, Rao Y (2003) Ayurvedic Pharmacoepidemiology: a proposed new discipline. J Assoc Phys India 51:528–531

    Google Scholar 

  • Ved HS, Koenig ML, Dave JR (1997) Huperzine A, a potential therapeutic agent for dementia, reduces neuronal cell death caused by glutamate. Neuroreport 8(4):963–968

    Article  CAS  PubMed  Google Scholar 

  • Verpoorte R, Choi YH, Kim HK (2005) Ethnopharmacology and system biology: a perfect holistic match. J Ethnopharmacol 100(1–2):53–56

    Article  CAS  PubMed  Google Scholar 

  • Xiangming L, Su C, Zhou S, Lisi W, Ming G (2014) The development and application of methodology of reverse pharmacology illustrated with the research on analgesic effect of Resina Draconis. J Homeop Ayurv Med 3(3):1–7

    Google Scholar 

  • Zukin SR, Zukin RS (1979) Specific [3H]phencyclidine binding in rat central nervous system. Proc Natl Acad Sci U S A 76(10):5372–5376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Suba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suba, V. (2021). Reverse Pharmacology: A Tool for Drug Discovery from Traditional Medicine. In: Mandal, S.C., Chakraborty, R., Sen, S. (eds) Evidence Based Validation of Traditional Medicines. Springer, Singapore. https://doi.org/10.1007/978-981-15-8127-4_15

Download citation

Publish with us

Policies and ethics