Skip to main content

Allelochemicals: An Emerging Tool for Weed Management

  • Chapter
  • First Online:
Evidence Based Validation of Traditional Medicines

Abstract

Allelopathy represents a mechanism by which plant releases biochemical compounds that influence cell division, seed germination, physiology, overall growth, development, and survival of other plants. Presently, allelochemicals find applications in crop field, especially in weed management, and in agricultural systems as growth regulator, as well as herbicides. Applying such allelochemicals is safer than synthetic harmful chemicals as these natural biodegradable phytometabolites hardly leave residual toxicity on targets. Allelopathy is mostly reported to produce inhibitory action of allelochemicals against targeted weeds and promises potent alternative to chemical herbicides. This article evaluates promising aspects of diverse allelochemicals as an upcoming tool in weed management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Softcover Book
USD 219.99
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akemo MC, Regnier EE et al (2000) Weed suppression in spring-sown rye (Secale cereale)-pea (Pisum sativum) cover crop mixes. Weed Technol 14(3):545–549

    Google Scholar 

  • Amna AHF, Hakeem KR et al (2019) Weed control through herbicide-loaded nanoparticles. In: Husen A, Iqbal M (eds) Nanomaterials and plant potential. Springer, Cham, pp 507–522

    Google Scholar 

  • Aslani F, Juraimi A et al (2015) Phytotoxic interference of volatile organic compounds and water extracts of Tinospora tuberculata Beumee on growth of weeds in rice fields. S Afr J of Bot 100:132–140

    CAS  Google Scholar 

  • Caamal-maldonado JA, Jiménez-osornio JJ et al (2001) The use of allelopathic legume cover and mulch species for weed control in cropping systems. Agron J 93(1):27–36

    Google Scholar 

  • Cheema ZA (1988) Weed control in wheat through sorghum allelochemicals. Ph.D. Thesis, University of Agriculture, Faisalabad, Pakistan

    Google Scholar 

  • Cheema ZA, Khaliq A (2000) Use of sorghum allelopathic properties to control weeds in irrigated wheat in semi arid region of Punjab. Agric Ecosyst Environ 79:105–112. https://doi.org/10.1016/S0167-8809(99)00140-1

    Article  Google Scholar 

  • Chon SU, Jennings JA et al (2006) Alfalfa (Medicago sativa L.) autotoxicity: current status. Allelopath J 18:57–80

    Google Scholar 

  • Croteau RB, Gershenzon J, McConky ME (2000) Regulation of monoterpene accumulation in leaves of peppermint. Plant Phys 122:205–213

    Google Scholar 

  • Das C, Bandyopadhyay A (2011) Search for allelopathic potential of leaves of Shorea robusta Gaertn.f. Bionature 31(1):29–35

    Google Scholar 

  • Dayan FE (2006) Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta 224:339–346

    CAS  PubMed  Google Scholar 

  • Dayan FE, Owen DK et al (2012) Rationale for a natural products approach to herbicide discovery. Pest Manag Sci 68:519–528

    CAS  PubMed  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK et al (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32

    CAS  PubMed  Google Scholar 

  • Duke SO (1985) Biosynthesis of phenolic compounds—chemical manipulation in higher plants. In. Thompson AC (ed) The chemistry of allelopathy: biochemical interactions among plants. Am. Chem. Soc. Symp. Ser. 268. Am. Chem. Soc., Washington, DC, p 113–131

    Google Scholar 

  • Duke SO, Dayan FE, Romagni JG et al (2000) Natural products as sources of herbicides: current status and future trends. Weed Res 40:99–111

    CAS  Google Scholar 

  • Duke SO, Dayan FE, Rimando AM et al (2002) Chemicals from nature for weed management. Weed Sci 50:138–151

    CAS  Google Scholar 

  • Einhellig FA (1995) Allelopathy-current status and future goals. In: Inderjit A, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and applications. American Chemical Society Press, Washington DC, pp 1–24

    Google Scholar 

  • Fujii Y (1994) Screening of allelopathic candidates by new specific discrimination, and assessment methods for allelopathy, and the identification of l-dopa as the allelopathic substance from the most promising velvetbean (Mucuna pruriens). Bull Natl Inst Agro-Environ Sci 10:115–218

    CAS  Google Scholar 

  • Gerig TM, Blum U (1993) Modification of an inhibition curve to account for effects of a second compound. J Chem Ecol 19:2783–2790

    CAS  PubMed  Google Scholar 

  • Huang PM, Wang MC, Wang MK (1999) Catalytic transformation of phenolic compounds in the soil. In: Inderjit (ed) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, FL, pp 287–306

    Google Scholar 

  • Inderjit, Bhowmik PC (2002) The importance of allelochemicals in weed invasiveness and the natural suppression. In: Inderjit, Mallik AU (eds) Chemical ecology of plant: allelopathy of aquatic and terrestrial ecosystems. Birkhauser Verlag AG, Basal, pp 187–192

    Google Scholar 

  • Inderjit, Weston LA, Duke SO (2007) Challenges, achievements and opportunities in allelopathy research. J Plant Interact 1:69–81

    Google Scholar 

  • Iqbal J, Cheema ZA, Mushtaq M (2009) Allelopathic crop water extracts reduce the herbicide dose for weed control in cotton (Gossypium hirsutum). Int J Agric Biol 11(4):360–366

    CAS  Google Scholar 

  • Kah M, Brown CD (2006) Adsorption of ionizable pesticides in soil. Rev Environ Contam Toxicol 188:149–217

    CAS  PubMed  Google Scholar 

  • Kanchan S, Chandra J (1980) Pollen allelopathy-a new phenomenon. New Phytol 84(4):739–746

    Google Scholar 

  • Kato-Noguchi H (2002) Allelopathic substances in Pueraria thunbergiana. Phytochemistry 63:577–580

    Google Scholar 

  • Kato-Noguchi H (2011) Barnyard grass-induced rice allelopathy and momilactone B. J Plant Physiol 168:1016–1020

    CAS  PubMed  Google Scholar 

  • Khosla SN, Sobti SN (1979) Parthenin-A national health hazard, its control and utility-a review. Pesticides 13:21–27

    Google Scholar 

  • Kobayashi K (2004) Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biol Manag 4:1–7

    CAS  Google Scholar 

  • Kohli RK, Rani D (1994) Parthenium hysterophorus L.—a review. Res Bull. (Sci.) Pb Univ 44:105–149

    Google Scholar 

  • Kohli RK, Singh D (1991) Allelopathic impact of volatile components from Eucalyptus on crop plants. Biol Plantarum (Praha) 33:475–483

    CAS  Google Scholar 

  • Kong CH, Zhao H, Xu XH et al (2007) Activity and allelopathy of soil of flavone O-glycosides from rice. J Agric Food Chem 55:6007–6012

    CAS  PubMed  Google Scholar 

  • Kroymann J (2011) Natural diversity and adaptation in plant secondary metabolism. Curr Opin Plant Biol 14:246–251

    CAS  PubMed  Google Scholar 

  • Li XJ, Xia ZC, Kong CH et al (2013) Mobility and microbial activity of allelochemicals in soil. J Agric Food Chem 61:5072–5079

    CAS  PubMed  Google Scholar 

  • Netzley DH, Butler LG (1986) Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci 26:775–778

    Google Scholar 

  • Niemeyer HM (1988) Hydroxamic acids (4-hydroxy-1, 4-benzoxaazin-3-ones), defence chemicals in the Gramineae. Phytochemistry 27:267–292

    Google Scholar 

  • Petersen J, Belz R, Walker F et al (2001) Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron J 93(1):37–43

    CAS  Google Scholar 

  • Putnam AR (1988) Allelochemicals plants as herbicides. Weed Technol 2:510–518

    CAS  Google Scholar 

  • Rice EL (1984) Allelopathy. Academic, Orlando, FL

    Google Scholar 

  • Rimando AM, Olofsdotter M, Duke SO (2001) Searching for rice allelochemicals. Agron J 93:16–20

    CAS  Google Scholar 

  • Rizvi SJH, Haque H, Singh VK et al (1992) A discipline called allelopathy. In: Rizvi SJH, Rizvi V (eds) Allelopathy. Springer, Dordrecht, pp 1–10

    Google Scholar 

  • Schulz M, Marocco A, Tabaglio V et al (2013) Benzoxazinoids in rye allelopathy—from discovery to application in sustainable weed control and organic farming. J Chem Ecol 39:154–174

    CAS  PubMed  Google Scholar 

  • Seigler DS (1996) Chemistry and mechanism of allelopathic interactions. Agron J 88:876–885

    CAS  Google Scholar 

  • Soltys D, Krasuska U, Bogatek R et al (2013) Allelochemicals as bioherbicides—present and perspectives. In: Price AJ, Jessica AK (eds) Herbicides—current research and case studies in use. InTech, Croatia, pp 517–542

    Google Scholar 

  • Souza FAPS, Alves SM (2002) Alelopatia: princípios básicos e aspectos gerais. Embrapa Amazônia Oriental, Belém, p 206

    Google Scholar 

  • Stephenson GR (2000) Herbicide use and world food production: Risk and Benefits. In: Abstract of 3rd international Weed Science Congress, Foz Do Iguassu, Brazil, 6–11 June 2000

    Google Scholar 

  • Tookey HL, VanEtten CH, Daxenbichler ME (1980) In: Liener IE (ed) Toxic constituents of plant foodstuff. Academic, New York

    Google Scholar 

  • Topal S, Kocacaliskan I, Arslan O et al (2007) Herbicidal effects of juglone as an allelochemicals. Phyton 46(2):259–269

    CAS  Google Scholar 

  • Trezzi MM, Vidal RA, Dick DP et al (2006) Sorptive behavior of sorgoleone in ultisol in two solvent systems and determination of its lipophilicity. J Environ Sci Health Part B 41:345–356

    CAS  Google Scholar 

  • Turk MA, Tawaha AM (2003) Allelopathic effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L.). Crop Prot 22(4):673–677

    Google Scholar 

  • Uygur FN, Koseli F, Cinar A (1990) Die allelopathische Wirkung von Raphanus sativus L. J Plant Dis Prot 12:259–264

    Google Scholar 

  • Vyvyan JR (2002) Allelochemicals as leads to herbicides and agrochemicals. Tetrahedron 58:1631–1646

    CAS  Google Scholar 

  • Wang Q, Li ZH, Ruan X et al (2010) Phenolics and plant allelopathy. Molecules 15(12):8933–8952. https://doi.org/10.3390/molecules15128933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weston LA (1996) Utilization of allelopathy for weed management in agro-ecosystems. Agron J 88:860–866

    Google Scholar 

  • Weston LA, Duke SO (2003) Weed and crop allelopathy. Crit Rev Plant Sci 22(3-4):367–389

    CAS  Google Scholar 

  • Xuan T, Eiji T, Hiroyuki T et al (2003) Identification of potential allelochemicals from kava (Piper methysticum L.) root. Allelopath J 12:197–203

    Google Scholar 

  • Yu JQ, Matsui Y (1994) Phytotoxic substances in the root exudates of Cucumis sativus L. J Chem Ecol 20:21–31

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Bandyopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, C., Dey, A., Bandyopadhyay, A. (2021). Allelochemicals: An Emerging Tool for Weed Management. In: Mandal, S.C., Chakraborty, R., Sen, S. (eds) Evidence Based Validation of Traditional Medicines. Springer, Singapore. https://doi.org/10.1007/978-981-15-8127-4_12

Download citation

Publish with us

Policies and ethics