Skip to main content

Interplanetary Disturbances

  • Part II Causes of Space Weather
  • Chapter
  • First Online:
Space Weather

Part of the book series: Lecture Notes in Physics ((LNP,volume 656))

Abstract

The Sun emits the variable solar wind which interacts with the very local interstellar medium to form the heliosphere. Hence variations in solar activity strongly influence interplanetary space, from the Sun’s surface out to the edge of the heliosphere. Superimposed on the solar wind are mass ejections from the Sun and/or its corona which disturb the interplanetary medium – hence the name “interplanetary disturbances”.

Interplanetary disturbances are the sources of large-scale particle acceleration, of disturbances in the Earth’s magnetosphere, of modulations of galactic cosmic rays, in short, they are the prime focus for space weather studies.

This lecture will give an overview of the relevant physical background including magnetic reconnection, particle acceleration, cosmic-ray modulation, as well as an overview of the properties of the solar wind and of interplanetary manifestations of coronal mass ejections – the “interplanetary disturbances”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • 1. Baliunas, S. and R. Jastrow: Evidence for long-term brightness changes of solar-type stars Nature, 348, (1990), 520 – 523.

    Google Scholar 

  • 2. Baliunas, S. L., R. A. Donahue, W. H. Soon, J. H. Horne, J. Frazer, L. Woodard-Ecklund, M. Bradford, L. M. Rao, O. C. Wilson, Q. Zhang, et al.: Chromospheric variations in main-sequence stars II Astrophys. J., 438, (1995), 269 – 287.

    Google Scholar 

  • 3. Balogh, A., V. Bothmer, N. Crooker, R. Forsyth, G. Gloeckler, A. Hewish, M. Hilchenbach, R. Kallenbach, B. Klecker, J. Linker, et al.: The solar origin of corotating interaction regions and their formation in the inner heliosphere Space Sci. Rev., 89, (1999), 141 – 178.

    Google Scholar 

  • 4. Beer, J., S. Tobias, and N. Weiss: An active sun throughout the Maunder minimum Sol. Phys., 181, (1998), 237 – 249.

    Google Scholar 

  • 5. Bochsler, P.: Einführung in die Sonnenphysik I Physikalisches Institut, University of Bern (1992). Skriptum zur Vorlesung.

    Google Scholar 

  • 6. Bothmer, V. and D. M. Rust: The field configuration of magnetic clouds and the solar cycle In Coronal Mass Ejections, edited by N. Crooker, J. A. Joselyn, and J. Feynman, Geophysical Monograph Series. American Geophysical Union, Washington DC, USA (1997). 139 – 146.

    Google Scholar 

  • 7. Chen, F.F., Plasma Physics and Controlled Fusion, Plenum Press, New York, 1984.

    Google Scholar 

  • 8. Crooker, N. U., J. T. Gosling, and S. W. Kahler: Magnetic clouds at sector boundaries J. Geophys. Res., 103, (1998), 301 – 306.

    Google Scholar 

  • 9. Debrunner, H., E. Flueckiger, E. L. Chupp, and D. J. Forrest: The solar cosmic ray neutron event on June 3, 1982 International Cosmic Ray Conference, 18th, Bangalore, India, August 22-September 3, 1983, Conference Papers. Volume 4 (A85-22801 09-93). Bombay, Tata Institute of Fundamental Research, 4, (1983), 75–78.

    Google Scholar 

  • 10. Dulk, G. A.: Radio emission from the sun and stars Ann. Rev. Astron. Astrophys., 23, (1985), 169 – 224.

    Google Scholar 

  • 11. Eddy, J. A.: The Maunder minimum Science, 192, (1976), 1189 – 1202.

    Google Scholar 

  • 12. Fermi, E.: On the origin of the cosmic radiation Phys. Rev., 75, (1949), 1169 – 1174.

    Google Scholar 

  • 13. Geiss, J.: Solar wind composition and implications about the history of the solar system volume 5 (1973). 3375 – 3398. Proceedings of 13th International Cosmic Ray Conference.

    Google Scholar 

  • 14. Gloeckler, G., L. A. Fisk, S. Hefti, N. Schwadron, T. Zurbuchen, F. M. Ipavich, J. Geiss, P. Bochsler, and R. Wimmer-Schweingruber: Unusual composition of the solar wind in the 2 May 1998 CME observed with SWICS on ACE Geophys. Res. Lett, 26, (1999), 157 – 160.

    Google Scholar 

  • 15. Gloeckler, G., J. Geiss, E. C. Roelof, L. A. Fisk, F. M. Ipavich, K. W. Ogilvie, L. J. Lanzerotti, R. von Steiger, and B. Wilken: Acceleration of interstellar pickup ions in the disturbed solar wind observed on ULYSSES J. Geophys. Res., 99, (1994), 17637 – 17643.

    Google Scholar 

  • 16. Golub, L. and J. M. Pasachoff: The Solar Corona Cambridge University Press, Cambridge, UK (1997).

    Google Scholar 

  • 17. Gosling, J. T., P. Riley, D. J. McComas, and V. J. Pizzo: Overexpanding coronal mass ejections at high heliographic latitudes: Observations and simulations J. Geophys. Res., 103, (1998), 1941 – 1954.

    Google Scholar 

  • 18. Henke, T., J. Woch, U. Mall, S. Livi, B. Wilken, R. Schwenn, G. Gloeckler, R. v. Steiger, R. J. Forsyth, and A. Balogh: Differences in the O7+/O6+ ratio of magnetic cloud and non-cloud coronal mass ejections Geophys. Res. Lett., 25, (1998), 3465 – 3468.

    Google Scholar 

  • 19. Hurford, G.J., Schwartz, R.A., Krucker, S., Lin, R.P., Smith, D.M., Vilmer, N., Astrophys. J., 595, (2003), 77 – 80.

    Google Scholar 

  • 20. Jones, F. C.: A theoretical review of diffusive shock acceleration Astrophys. J. Suppl. Ser., 90, (1994), 561 – 665.

    Google Scholar 

  • 21. Kallenrode, M.-B., Space Physics, Springer, Berlin, 1998.

    Google Scholar 

  • 22. Kohl, J. L., R. Esser, L. D. Gardner, S. Habbal, P. S. Daigneau, E. F. Dennis, G. U. Nystrom, A. Panasyuk, J. C. Raymond, P. L. Smith, et al.: The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory Solar Phys., 162, (1995), 313 – 356.

    Google Scholar 

  • 23. Lang, K. R.: The Sun from Space Springer, Berlin (2000).

    Google Scholar 

  • 24. Leighton, R. B.: Observations of solar magnetic fields in plage regions Astrophys. J., 130, (1959), 366 – 380.

    Google Scholar 

  • 25. Lin, R.P., Krucker, S., Hurford, G.J., Smith, D.M., Hudson, H.S., et al., Astrophys. J., 595, (2003), 69 – 76.

    Google Scholar 

  • 26. Lindsay, G. M., C. T. Russell, J. G. Luhmann, and P. Gazis: On the sources of interplanetary shocks at 0.72 AU J. Geophys. Res., 99, (1994), 11 – 17.

    Google Scholar 

  • 27. Low, B. C.: The role of coronal mass ejections in solar activity In Coronal Mass Ejections, edited by N. Crooker, J. A. Joselyn, and J. Feynman. American Geophysical Union (1997). 39 – 47. Geophysical Monograph 99.

    Google Scholar 

  • 28. Maunder, E. W.: Mon. Not. Royal Astron. Soc., 50, (1890), 251.

    Google Scholar 

  • 29. Maunder, E. W.: Knowledge, 17, (1894), 173.

    Google Scholar 

  • 30. McKibben, R. B., J. R. Jokipii, R. A. Burger, B. Heber, J. Kóta, F. B. McDonald, C. Paizis, M. Potgieter, and I. G. Richardson: Modulation of cosmic rays and anomalous components by CIRs – Report by Working Group 5 Space Sci. Rev., 89, (1999), 307 – 326.

    Google Scholar 

  • 31. Neukomm, R. O. and P. Bochsler: Diagnostics of closed magnetic structures in the solar corona using charge states of helium and of minor ions Astrophys. J., 465, (1996), 462 – 472.

    Google Scholar 

  • 32. Nindos, A. and H. Zhang: Photospheric motions and coronal mass ejection productivity Astrophys. J., 573, (2002), L133 – L136.

    Google Scholar 

  • 33. Nindos, A., J. Zhang, and H. Zhang: The magnetic helicity budget of solar active regions and coronal mass ejections Astrophys. J., 594, (2003), 1033 – 1048.

    Google Scholar 

  • 34. Noyes, R. W., L. W. Hartmann, S. L. Baliunas, D. K. Duncan, and A. H. Vaughan: Rotation, convection, and magnetic activity in lower main-sequence stars Astrophys. J., 279, (1984), 763 – 777.

    Google Scholar 

  • 35. Parker, E. N.: Cosmical Magnetic Fields Oxford University Press (1979).

    Google Scholar 

  • 36. Petschek, H. E.: Magnetic field annihilation In The Physics of Solar Flares, edited by W. N. Ness. NASA SP-50 (1964). 425 – 439.

    Google Scholar 

  • 37. Rossi, B. Olbert, S., Introduction to the Physics of Space, McGraw-Hill, 1970

    Google Scholar 

  • 38. Schüssler, M.: The sun and its magnetic activity In Space Weather – The Physics Behind a Slogan, edited by K. Scherer, H. Fichtner, B. Heber, and U. Mall, Lecture Notes in Physics, Springer, Berlin, Germany (2003), this volume.

    Google Scholar 

  • 39. Schwabe, H.: astron. Nachr., 20, No.205, 1843.

    Google Scholar 

  • 40. Schwadron, N. A., L. A. Fisk, and G. Gloeckler: Statistical acceleration of interstellar pick-up ions in co-rotating interaction regions Geophys. Res. Lett., 23, (1996), 2871 – 2874.

    Google Scholar 

  • 41. Schwenn, R., H. Rosenbauer, and K.-H. Mühlhäuser: Singly-ionized helium in the driver gas of an interplanetary shock wave Geophys. Res. Lett., 7, (1980), 201 – 204.

    Google Scholar 

  • 42. Shea, M. A. and D. F. Smart: A summary of major solar proton events Solar Phys., 127, (1990), 297 – 320.

    Google Scholar 

  • 43. Skumanich, A.: Timescales for Ca II emission decay, rotational breaking, and Li depletion Astrophys. J., 171, (1972), 565 – 567.

    Google Scholar 

  • 44. Skumanich, A., C. Smythe, and E. N. Frazier: On the statistical description of inhomogeneitites in the quiet solar atmosphere I Linear regression analysis and absolute calibration of multichannel observations of the Ca+ emission network Astrophys. J., 200, (1975), 747 – 764.

    Google Scholar 

  • 45. Smith, E. J.: Observations of interplanetary shocks: Recent progress Space Sci. Rev., 34, (1983), 101 – 110.

    Google Scholar 

  • 46. Soderblom, D. R., D. K. Duncan, and D. R. H. Johnson: The chromospheric emission-age relation for stars of the lower main sequence and its implications for the star forming rate Astrophys. J., 375, (1991), 722 – 739.

    Google Scholar 

  • 47. Spörer, F. W. G.: Vierteljahrsschrift Astron. Ges. Leipzig, 22, (1887), 323.

    Google Scholar 

  • 48. Spörer, F. W. G.: Bull. Astron., 6, (1889), 60.

    Google Scholar 

  • 49. St. Cyr, O. C., R. A. Howard, N. R. Sheeley Jr., S. P. Plunkett, D. j. Michels, S. E. Paswaters, M. J. Koomen, G. M. Simnett, B. j. Thompson, J. B. Gurman, et al.: Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998 J. Geophys. Res., 105, (2000), 18169 – 18185.

    Google Scholar 

  • 50. Stone, R.G., Tsurutani, B.T., Collisionless Shocks in the Heliosphere: A Tutorial, American Geophysical Union, 1985.

    Google Scholar 

  • 51. Webb, D. F. and R. A. Howard: The solar cycle variation of coronal mass ejections and the solar wind flux J. Geophys. Res., 99, (1994), 4201 – 4220.

    Google Scholar 

  • 52. Widing, K. G. and U. Feldman: On the rate of abundance modifications versus time in active region plasmas Astrophys. J., 555, (2001), 426 – 434.

    Google Scholar 

  • 53. Wieler, R.: The solar noble gas record in lunar samples and meteorites Space Sci. Rev., 85, (1998), 303 – 314.

    Google Scholar 

  • 54. Wieler, R., H. Baur, and P. Signer: Noble gases from solar energetic particles revealed by closed system stepwise etching of lunar soil material Geochim. et Cosmoschim. Acta, 50, (1986), 1997 – 2017.

    Google Scholar 

  • 55. Wilhelm, K., W. Curdt, E. Marsch, U. Schüle, P. Lemaire, A. Gabriel, J. Vial, M. Grewing, M. C. E. Huber, S. D. Jordan, et al.: SUMER – Solar Ultraviolet Measurements of Emitted Radiation Solar Phys., 162, (1995), 189 – 231.

    Google Scholar 

  • 56. Wilson, O. C.: Flux measurements at the centers of stellar H- and K-lines Astrophys. J., 153, (1968), 221 – 234.

    Google Scholar 

  • 57. Wilson, O. C.: Chromospheric variations in main-sequence stars Astrophys. J., 226, (1978), 379 – 396.

    Google Scholar 

  • 58. Wilson, O. C. and M. K. V. Bappu: H and K emission in late-type stars: Dependence of line width on luminosity and related topics Astrophys. J., 125, (1957), 661 – 683.

    Google Scholar 

  • 59. Wimmer-Schweingruber, R. F.: The composition of the solar wind In Proc. Solar Wind 10 Conf., edited by M. Velli. American Institute of Physics, Melville, NY, USA (2003). Accepted for publication.

    Google Scholar 

  • 60. Wimmer-Schweingruber, R.F., Bochsler, P., Lunar Soils: A Long-Term Archive for the Galactic Environment of the Heliosphere?, in: AIP conference proceedings, 399 – 404, 2001.

    Google Scholar 

  • 61. Wimmer-Schweingruber, R. F., O. Kern, and D. C. Hamilton: On the solar wind composition during the November 1997 solar particle events: WIND/MASS observations Geophys. Res. Lett., 26, (1999), 3541 – 3544.

    Google Scholar 

  • 62. Wolf, R.: Astron. Mitt. Zürich, 14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus Scherer Horst Fichtner Bernd Heber Urs Mall

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Wimmer-Schweingruber, R.F. Interplanetary Disturbances. In: Scherer, K., Fichtner, H., Heber, B., Mall, U. (eds) Space Weather. Lecture Notes in Physics, vol 656. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31534-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31534-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22907-0

  • Online ISBN: 978-3-540-31534-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics